Abstract

We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 μW/nm. By choosing a relatively low optical Q resonance (≈18,000) we prevent the cavity from reaching the regime of regenerative optomechanical oscillations. The static mechanical displacement induced by optical gradient forces is estimated to be as large as 60 nm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
    [CrossRef] [PubMed]
  2. K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
    [CrossRef]
  3. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
    [CrossRef]
  4. T. Hansch, and A. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975).
    [CrossRef]
  5. B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, M. Lipson, and K. Bergman, “High-speed 2x2 switch for multiwavelength silicon-photonic networks-on-chip,” J. Lightwave Technol. 27, 2900–2907 (2009).
    [CrossRef]
  6. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
    [CrossRef]
  7. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17, 22271–22280 (2009).
    [CrossRef]
  8. N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
    [CrossRef]
  9. A. Biberman, N. Sherwood-Droz, B. G. Lee, M. Lipson, and K. Bergman, “Thermally active 4x4 non-blocking switch for networks-on-chip,” in the “21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (2008)”, pp. 370–371.
  10. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (noc),” Opt. Express 16, 15915–15922 (2008).
    [CrossRef] [PubMed]
  11. T. J. Wang, C. H. Chu, and C. Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett. 32, 2777–2779 (2007).
    [CrossRef] [PubMed]
  12. A. Guarino, G. Poberaj, and D. Rezzonico, “R. Degl’Innocenti, and P. Gunter, “Electro-optically tun-able microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
    [CrossRef]
  13. A. Reja, W. H. Charles, G. Fuwan, I. S. Henry, K. Franz, J. R. Rajeev, and A. P. Milos, “Low power thermal tuning of second-order microring resonators,” in “CLEO/QELS,” (Optical Society of America, 2007), OSA Technical Digest Series (CD), p. CFQ5.
  14. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
    [CrossRef] [PubMed]
  15. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Loncar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18, 8705–8712 (2010).
    [CrossRef] [PubMed]
  16. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16, 14421–14428 (2008).
    [CrossRef] [PubMed]
  17. J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
    [CrossRef]
  18. M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
    [CrossRef]
  19. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
    [CrossRef]
  20. F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Con-tinuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16, 2212–2214 (2004).
    [CrossRef]
  21. T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18, 7872–7885 (2010).
    [CrossRef] [PubMed]
  22. R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).
  23. D. Van Thourhout, and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010).
    [CrossRef]
  24. M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
    [CrossRef] [PubMed]
  25. J. Ma and M. L. Povinelli, “Large tuning of birefringence in two strip silicon waveguides via optomechanical motion,” Opt. Express 17, 17818–17828 (2009).
    [CrossRef] [PubMed]
  26. P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1, 658–665 (2007).
    [CrossRef]
  27. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
    [CrossRef] [PubMed]
  28. Each ring contributes to half of the total change in the gap between them. the spring constant k is calculated through the static response of the rings to the optical force, a solid-stress finite element analysis was used.
  29. F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nat. Mater. 4, 629–634 (2005).
    [CrossRef]
  30. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
    [CrossRef] [PubMed]
  31. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
    [CrossRef] [PubMed]
  32. A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncer-tainty limit,” Nat. Phys. 5, 509–514 (2009).
    [CrossRef]
  33. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
    [CrossRef] [PubMed]
  34. G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
    [CrossRef]
  35. M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 10 pages (1999).
  36. M. Bao, and H. Yang, “Squeeze film air damping in mems,” Sens. Actuators A Phys. 136, 3–27 (2007).
    [CrossRef]
  37. T. Kippenberg, and K. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
    [CrossRef] [PubMed]
  38. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
    [CrossRef]
  39. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high q ring resonator,” Opt. Express 17, 11366–11370 (2009).
    [CrossRef] [PubMed]
  40. Comsol multiphysics 3.5a is a finite-element multiphysics simulation tool. Comsol AB.

2010 (5)

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).

D. Van Thourhout, and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010).
[CrossRef]

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18, 7872–7885 (2010).
[CrossRef] [PubMed]

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Loncar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18, 8705–8712 (2010).
[CrossRef] [PubMed]

2009 (10)

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[CrossRef] [PubMed]

B. G. Lee, A. Biberman, N. Sherwood-Droz, C. B. Poitras, M. Lipson, and K. Bergman, “High-speed 2x2 switch for multiwavelength silicon-photonic networks-on-chip,” J. Lightwave Technol. 27, 2900–2907 (2009).
[CrossRef]

J. Ma and M. L. Povinelli, “Large tuning of birefringence in two strip silicon waveguides via optomechanical motion,” Opt. Express 17, 17818–17828 (2009).
[CrossRef] [PubMed]

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17, 22271–22280 (2009).
[CrossRef]

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
[CrossRef]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncer-tainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

2008 (7)

G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16, 14421–14428 (2008).
[CrossRef] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (noc),” Opt. Express 16, 15915–15922 (2008).
[CrossRef] [PubMed]

M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

2007 (7)

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1, 658–665 (2007).
[CrossRef]

T. J. Wang, C. H. Chu, and C. Y. Lin, “Electro-optically tunable microring resonators on lithium niobate,” Opt. Lett. 32, 2777–2779 (2007).
[CrossRef] [PubMed]

T. Kippenberg, and K. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
[CrossRef] [PubMed]

A. Guarino, G. Poberaj, and D. Rezzonico, “R. Degl’Innocenti, and P. Gunter, “Electro-optically tun-able microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[CrossRef]

M. Bao, and H. Yang, “Squeeze film air damping in mems,” Sens. Actuators A Phys. 136, 3–27 (2007).
[CrossRef]

2005 (3)

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
[CrossRef] [PubMed]

F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nat. Mater. 4, 629–634 (2005).
[CrossRef]

2004 (1)

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Con-tinuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16, 2212–2214 (2004).
[CrossRef]

2003 (1)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

1975 (1)

T. Hansch, and A. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975).
[CrossRef]

Alegre, T. P. M.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).

T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18, 7872–7885 (2010).
[CrossRef] [PubMed]

Amann, M.-C.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Con-tinuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16, 2212–2214 (2004).
[CrossRef]

Anetsberger, G.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncer-tainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

Arcizet, O.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncer-tainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

Aspelmeyer, M.

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

Baehr-Jones, T.

M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Bao, M.

M. Bao, and H. Yang, “Squeeze film air damping in mems,” Sens. Actuators A Phys. 136, 3–27 (2007).
[CrossRef]

Batteiger, V.

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

Bergman, K.

Biberman, A.

Boehm, G.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Con-tinuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16, 2212–2214 (2004).
[CrossRef]

Camacho, R.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Capasso, F.

Carmon, T.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

Chang, D.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

Chen, L.

Chu, C. H.

Clews, P. J.

F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nat. Mater. 4, 629–634 (2005).
[CrossRef]

Cohen, J. D.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).

Daqun, L.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

De Boer, M. P.

F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nat. Mater. 4, 629–634 (2005).
[CrossRef]

Delrio, F. W.

F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nat. Mater. 4, 629–634 (2005).
[CrossRef]

Deotare, P. B.

Dunn, M. L.

F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nat. Mater. 4, 629–634 (2005).
[CrossRef]

Eichenfield, M.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[CrossRef]

Frank, I. W.

Gondarenko, A.

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[CrossRef] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

Groblacher, S.

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

Guarino, A.

A. Guarino, G. Poberaj, and D. Rezzonico, “R. Degl’Innocenti, and P. Gunter, “Electro-optically tun-able microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

Halbritter, H.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Con-tinuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16, 2212–2214 (2004).
[CrossRef]

Hammerer, K.

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

Hane, K.

Hansch, T.

T. Hansch, and A. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975).
[CrossRef]

Hansch, T. W.

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

Han-Yong, N.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

Herrmann, M.

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

Hochberg, M.

M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

Ibanescu, M.

Ippen, E. P.

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1, 658–665 (2007).
[CrossRef]

Jiang, X.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Johnson, S. G.

Jose, M.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

Kachesh, P.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

Kanamori, Y.

Kippenberg, T.

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

T. Kippenberg, and K. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
[CrossRef] [PubMed]

Kippenberg, T. J.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncer-tainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Knapp, J. A.

F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nat. Mater. 4, 629–634 (2005).
[CrossRef]

Knunz, S.

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

Kokubun, Y.

Lee, B. G.

Lee, M. C. M.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

Leuenberger, D.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

Levy, J. S.

Li, M.

M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Lin, C. Y.

Lin, Q.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

Lipson, M.

Lira, H. L. R.

Loncar, M.

Ma, J.

Manipatruni, S.

Maute, M.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Con-tinuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16, 2212–2214 (2004).
[CrossRef]

McCutcheon, M. W.

Meenehan, S.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).

Meissner, P.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Con-tinuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16, 2212–2214 (2004).
[CrossRef]

Michael, C. P.

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[CrossRef]

Michael, R. W.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

Painter, O.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18, 7872–7885 (2010).
[CrossRef] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
[CrossRef]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[CrossRef]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Perahia, R.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).

T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18, 7872–7885 (2010).
[CrossRef] [PubMed]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[CrossRef]

Pernice, W.

M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Poberaj, G.

A. Guarino, G. Poberaj, and D. Rezzonico, “R. Degl’Innocenti, and P. Gunter, “Electro-optically tun-able microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

Poitras, C. B.

Popovic, M. A.

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1, 658–665 (2007).
[CrossRef]

Povinelli, M. L.

Rakich, P. T.

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1, 658–665 (2007).
[CrossRef]

Reedy, E. D.

F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nat. Mater. 4, 629–634 (2005).
[CrossRef]

Rezzonico, D.

A. Guarino, G. Poberaj, and D. Rezzonico, “R. Degl’Innocenti, and P. Gunter, “Electro-optically tun-able microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

Riemenschneider, F.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Con-tinuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16, 2212–2214 (2004).
[CrossRef]

Rivi, R.

G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

Riviere, R.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncer-tainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

Rivière, R.

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

Roberto, R. P.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

Roels, J.

D. Van Thourhout, and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010).
[CrossRef]

Rokhsari, H.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

Rosenberg, J.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

Saathoff, G.

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

Schawlow, A.

T. Hansch, and A. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975).
[CrossRef]

Schliesser, A.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncer-tainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

Sherwood-Droz, N.

Smythe, E. J.

Soljacic, M.

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1, 658–665 (2007).
[CrossRef]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Takahashi, K.

Tang, H.

M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Udem, T.

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

Vahala, K.

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

T. Kippenberg, and K. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
[CrossRef] [PubMed]

Vahala, K. J.

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Van Thourhout, D.

D. Van Thourhout, and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010).
[CrossRef]

Vanner, M. R.

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

Wang, H.

Wang, T. J.

Wiederhecker, G. S.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

Wu, M. C.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

Xiong, C.

M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Xuan, W.

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

Yang, H.

M. Bao, and H. Yang, “Squeeze film air damping in mems,” Sens. Actuators A Phys. 136, 3–27 (2007).
[CrossRef]

Yang, L.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

Yao, J.

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical ‘zipper’ cavity laser,” Appl. Phys. Lett. 97, 191112 (2010).

IEEE J. Sel. Top. Quantum Electron. (1)

J. Yao, D. Leuenberger, M. C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated mems tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13, 202–208 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Con-tinuously tunable long-wavelength mems-vcsel with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16, 2212–2214 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Mater. (1)

F. W. Delrio, M. P. De Boer, J. A. Knapp, E. D. Reedy, P. J. Clews, and M. L. Dunn, “The role of van der waals forces in adhesion of micromachined surfaces,” Nat. Mater. 4, 629–634 (2005).
[CrossRef]

Nat. Photonics (8)

P. T. Rakich, M. A. Popovic, M. Soljacic, and E. P. Ippen, “Trapping, corralling and spectral bonding of optical resonances through optically induced potentials,” Nat. Photonics 1, 658–665 (2007).
[CrossRef]

M. Eichenfield, C. P. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[CrossRef]

D. Van Thourhout, and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4, 211–217 (2010).
[CrossRef]

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3, 478–483 (2009).
[CrossRef]

A. Guarino, G. Poberaj, and D. Rezzonico, “R. Degl’Innocenti, and P. Gunter, “Electro-optically tun-able microring resonators in lithium niobate,” Nat. Photonics 1, 407–410 (2007).
[CrossRef]

Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K. J. Vahala, and O. Painter, “Coherent mixing of mechanical excitations in nano-optomechanical structures,” Nat. Photonics 4, 236–242 (2010).
[CrossRef]

G. Anetsberger, R. Rivi, A. Schliesser, O. Arcizet, and T. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008).
[CrossRef]

Nat. Phys. (3)

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncer-tainty limit,” Nat. Phys. 5, 509–514 (2009).
[CrossRef]

K. Vahala, M. Herrmann, S. Knunz, V. Batteiger, G. Saathoff, T. W. Hansch, and T. Udem, “A phonon laser,” Nat. Phys. 5, 682–686 (2009).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008).
[CrossRef]

Nature (3)

S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[CrossRef] [PubMed]

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

M. Li, W. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

T. Hansch, and A. Schawlow, “Cooling of gases by laser radiation,” Opt. Commun. 13, 68–69 (1975).
[CrossRef]

Opt. Eng. (1)

N. Han-Yong, R. W. Michael, L. Daqun, W. Xuan, M. Jose, R. P. Roberto, and P. Kachesh, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47, 044601 (2008).
[CrossRef]

Opt. Express (8)

J. Ma and M. L. Povinelli, “Large tuning of birefringence in two strip silicon waveguides via optomechanical motion,” Opt. Express 17, 17818–17828 (2009).
[CrossRef] [PubMed]

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17, 22271–22280 (2009).
[CrossRef]

T. P. M. Alegre, R. Perahia, and O. Painter, “Optomechanical zipper cavity lasers: theoretical analysis of tuning range and stability,” Opt. Express 18, 7872–7885 (2010).
[CrossRef] [PubMed]

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Loncar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18, 8705–8712 (2010).
[CrossRef] [PubMed]

T. Kippenberg, and K. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007).
[CrossRef] [PubMed]

K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16, 14421–14428 (2008).
[CrossRef] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (noc),” Opt. Express 16, 15915–15922 (2008).
[CrossRef] [PubMed]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (3)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[CrossRef] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

M. Bao, and H. Yang, “Squeeze film air damping in mems,” Sens. Actuators A Phys. 136, 3–27 (2007).
[CrossRef]

Other (5)

Comsol multiphysics 3.5a is a finite-element multiphysics simulation tool. Comsol AB.

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 10 pages (1999).

Each ring contributes to half of the total change in the gap between them. the spring constant k is calculated through the static response of the rings to the optical force, a solid-stress finite element analysis was used.

A. Biberman, N. Sherwood-Droz, B. G. Lee, M. Lipson, and K. Bergman, “Thermally active 4x4 non-blocking switch for networks-on-chip,” in the “21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (2008)”, pp. 370–371.

A. Reja, W. H. Charles, G. Fuwan, I. S. Henry, K. Franz, J. R. Rajeev, and A. P. Milos, “Low power thermal tuning of second-order microring resonators,” in “CLEO/QELS,” (Optical Society of America, 2007), OSA Technical Digest Series (CD), p. CFQ5.

Supplementary Material (1)

» Media 1: MOV (3845 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical force actuated optical microcavity. a. Schematic of the device with a sliced cross-section showing the TE1 symmetric optical mode profile. b. Optical resonant wavelength (blue curve, left axis) and optomechanical tuning efficiency (red curve, right axis) dependence with the air gap between the rings. The black-dashed line indicates a gap of 170 nm, close to the fabricated cavity. c,d. Scanning electron micrograph of two vertically stacked ring cavites.

Fig. 2
Fig. 2

Limit for static tunability of optomechanical cavities. (a) Two simulated mechanical floppy modes and their respective effective masses. (b) Effective mechanical linewidth normalized by the intrinsic mechanical linewidth (Γ′mm) as a function of the normalized pump laser frequency detuning (Δ/Γ). The blue-detuned pump laser induces gain, which above a certain threshold induces regenerative mechanical oscillations. The dashed-blue line indicates the optical resonance profile whereas the dashed-green line shows the oscillation threshold. (c) Maximum static tuning predicted by Eq. (2) before reaching oscillation threshold versus the loaded optical quality factor. The different lines corresponds to the threshold for the two different mechanical modes shown in part (a). The dashed vertical line indicates the loaded optical Q of the tested device.

Fig. 3
Fig. 3

Experimental setup and cold-transmission. (a) Top view optical micrograph of the device showing the tapered optical fiber used to support the device. This is due to change in the interference pattern as the air-gap between the rings changes. (b) Schematic of the experimental setup, PD1,2 denotes the two photodiodes used to record the pump and probe transmission. (c) Low power (100 nW) optical transmission of the cavity highlighting both the probe (1460–1500 nm) and pump (1575–1620 nm) wavelength region.

Fig. 4
Fig. 4

Optomechanical tuning of double-ring cavity. (a) ( Media 1) Measured probe laser transmission for a pump power of 13 mW. The different curves are recorded at distinct pump laser detuning from the cavity resonance, the bottom and top curves are recorder when the pump laser is out of resonance and fully resonant, respectively; the micrographs on the right show the cavity color recorded corresponding to the transmission curves indicated by the arrows. The embedded movie shows the ring color changing as the optical force builds up on the device. (b) Measured optical transmission of the pump laser at increasing power levels. (c) RF spectrum showing the optomechanical amplification of the mechanical resonance, even at maximum amplification (yellow curve) the measured mechanical quality factor is 30. (d) RF spectrum of the transmitted pump laser showing the optical spring effect on the mechanical resonance. The highlighted regions (e,g) show the anti-crossing between the mechanical resonant modes. The false color scale represents the RF power in dBm. (f,g) Simulated bright and dark mechanical modes corresponding to the anti-crossings observed on (e,g).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ω = 2 Q i g o m 2 ω 0 2 k P d ,
Δ ω t h ( m ) = m eff ( m ) Ω m 2 k Q m ( g o m g o m ( m ) ) 2 ( ω 0 Q ) 2 m eff ( m ) Ω m 2 k Q m ( ω 0 Q ) 2 .

Metrics