Abstract

Laterally electrically-pumped Si light-emitting diodes (LEDs) based on truncated nanocrystalline-Si (nc-Si)/SiO2 quantum wells are fabricated with complementary-metal-semiconductor-oxide (CMOS) process. Visible electroluminescence (EL) can be observed under a reverse bias larger than ~6 V. The light emission would probably originate from the spontaneous hot-carrier relaxations within the conduction and the valance bands when the device is sufficiently reverse-biased. The EL spectral profile is found to be modulated by varying structure parameters of the interdigitated finger electrodes. Up to ~20 times EL intensity enhancement is achieved as compared to vertical-current-injection LED prepared using the same material system. Based on the lateral-current-injection scheme, a Si/SiO2 MQW LED with Fabry-Perot (FP) microcavity and an on-chip waveguided LED that emits at 1.55-µm are proposed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
    [CrossRef]
  2. V. Svrcek, D. Mariotti, and M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in warter,” Opt. Express 17, 521–527 (2010).
  3. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198 (2009).
    [CrossRef] [PubMed]
  4. L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, and A. A. Tseng, “Relationship between current transport and electroluminescence in Si+-implanted SiO2 thin films,” IEEE Trans. Electron. Dev. 56(11), 2785–2791 (2009).
    [CrossRef]
  5. W. K. Tan, M. B. Yu, Q. Chen, J. D. Ye, G. Q. Lo, and D. L. Kwong, “Re light emission from controlled multilayer stack comprising of thin amorphous silicon and silicon nitride layers,” Appl. Phys. Lett. 90(22), 221103 (2007).
    [CrossRef]
  6. W. K. Tan, M. B. Yu, Q. Chen, W. Y. Loh, J. D. Ye, Z. H. Zhang, G. Q. Lo, and D.-L. Kwong, “Thin amorphous Si/Si3N4-based light emitting device prepared with low thermal budget,” IEEE Electron Device Lett. 29(3), 228–231 (2008).
    [CrossRef]
  7. A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
    [CrossRef]
  8. T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, “Pulsed pumping of silicon nanocrystal light emitting devices,” Opt. Express 18(11), 10924–10930 (2010).
    [CrossRef] [PubMed]
  9. M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, and L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41(6), 912–915 (2009).
    [CrossRef]
  10. R. Tsu, “Silicon based quantum wells,” Nature 364(6432), 19 (1993).
    [CrossRef]
  11. N. Tessler, and G. Eisenstein, “Transient carrier response in multiple quantum well lasers,” in Proceeding of 13th IEEE Semicon. Laser Conf. pp. 44–45 (1992).
  12. M. Zacharias, J. Bläsing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, “Thermal crystallization of amorphous Si/SiO2 superlattice,” Appl. Phys. Lett. 74(18), 2614–2616 (1999).
    [CrossRef]
  13. M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and P. Avouris, “Hot carrier electroluminescence from a single carbon nanotube,” Nano Lett. 4(6), 1063–1066 (2004).
    [CrossRef]
  14. C. W. Liu, S. T. Chang, W. T. Liu, M.-J. Chen, and C.-F. Lin, “Hot carrier recombination model of visible electroluminescence from metal-oxide-silicon tunneling diodes,” Appl. Phys. Lett. 77(26), 4347–4349 (2000).
    [CrossRef]
  15. A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the Bremsstrahlung origin of hot-carrier-induced photons in Silicon device,” IEEE Tran. Electron Device 40(3), 577–582 (1993).
    [CrossRef]
  16. J. Bude, N. Sano, and A. Yoshii, “Hot-carrier luminescence in Si,” Phys. Rev. B Condens. Matter 45(11), 5848–5856 (1992).
    [CrossRef] [PubMed]
  17. B. K. Ridley, “Hot electrons in low-dimensional structures,” Rep. Prog. Phys. 54(2), 169–256 (1991).
    [CrossRef]
  18. H. Aharoni and M. du Plessis, “Low-operating-voltage integrated silicon light-emitting devices,” IEEE J. Quantum Electron. 40(5), 557–563 (2004).
    [CrossRef]
  19. M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
    [CrossRef] [PubMed]
  20. T. Trupke, J. Zhao, A. Wang, R. Corkish, and M. A. Green, “Very efficient light emission from bulk crystalline silicon,” Appl. Phys. Lett. 82(18), 2996–2998 (2003).
    [CrossRef]
  21. S. Sze, Physics of Semiconductor Devices, (Wiley, New York, 1981), pp 45–47.
  22. S. Boninelli, F. Iacona, G. Franzo, C. Bongiorno, C. Spinella, and F. Priolo, “Thermal evolution and photoluminescence properties of nanometric Si layers,” Nanotechnology 16(12), 3012–3016 (2005).
    [CrossRef]
  23. S. Fujita and N. Sugiyama, “Visible light-emitting devices with Schottky contacts on an ultrathin amorphous silicon layer containing silicon nanocrystals,” Appl. Phys. Lett. 74(2), 308–310 (1999).
    [CrossRef]
  24. P. Photopoulos and A. G. Nassiopoulou, “Room- and low-temperature voltage tunable electroluminescence from a single layer of silicon quantum dots in between two thin SiO2 layers,” Appl. Phys. Lett. 77(12), 1816–1818 (2000).
    [CrossRef]
  25. S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
    [CrossRef]
  26. A. Muscara, M. E. Castagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
    [CrossRef]
  27. C. D. Presti, A. Irrera, G. Franzò, I. Crupi, F. Priolo, F. Iacona, G. Di Stefano, A. Piana, D. Sanfilippo, and P. G. Fallica, “Photonic-crystal silicon nanoclusters light-emitting device,” Appl. Phys. Lett. 88(3), 033501 (2006).
    [CrossRef]
  28. F. Giorgis, “Optical microcavities based on amorphous silicon-nitride Fabry-Perot structures,” Appl. Phys. Lett. 77(4), 522–524 (2000).
    [CrossRef]
  29. C. A. Barrios and M. Lipson, “Electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13(25), 10092–10101 (2005).
    [CrossRef] [PubMed]
  30. F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanoclusters-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
    [CrossRef]
  31. S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
    [CrossRef]

2010 (3)

V. Svrcek, D. Mariotti, and M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in warter,” Opt. Express 17, 521–527 (2010).

S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
[CrossRef]

T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, “Pulsed pumping of silicon nanocrystal light emitting devices,” Opt. Express 18(11), 10924–10930 (2010).
[CrossRef] [PubMed]

2009 (4)

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198 (2009).
[CrossRef] [PubMed]

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, and A. A. Tseng, “Relationship between current transport and electroluminescence in Si+-implanted SiO2 thin films,” IEEE Trans. Electron. Dev. 56(11), 2785–2791 (2009).
[CrossRef]

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, and L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41(6), 912–915 (2009).
[CrossRef]

2008 (2)

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

W. K. Tan, M. B. Yu, Q. Chen, W. Y. Loh, J. D. Ye, Z. H. Zhang, G. Q. Lo, and D.-L. Kwong, “Thin amorphous Si/Si3N4-based light emitting device prepared with low thermal budget,” IEEE Electron Device Lett. 29(3), 228–231 (2008).
[CrossRef]

2007 (1)

W. K. Tan, M. B. Yu, Q. Chen, J. D. Ye, G. Q. Lo, and D. L. Kwong, “Re light emission from controlled multilayer stack comprising of thin amorphous silicon and silicon nitride layers,” Appl. Phys. Lett. 90(22), 221103 (2007).
[CrossRef]

2006 (2)

A. Muscara, M. E. Castagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
[CrossRef]

C. D. Presti, A. Irrera, G. Franzò, I. Crupi, F. Priolo, F. Iacona, G. Di Stefano, A. Piana, D. Sanfilippo, and P. G. Fallica, “Photonic-crystal silicon nanoclusters light-emitting device,” Appl. Phys. Lett. 88(3), 033501 (2006).
[CrossRef]

2005 (2)

S. Boninelli, F. Iacona, G. Franzo, C. Bongiorno, C. Spinella, and F. Priolo, “Thermal evolution and photoluminescence properties of nanometric Si layers,” Nanotechnology 16(12), 3012–3016 (2005).
[CrossRef]

C. A. Barrios and M. Lipson, “Electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13(25), 10092–10101 (2005).
[CrossRef] [PubMed]

2004 (2)

H. Aharoni and M. du Plessis, “Low-operating-voltage integrated silicon light-emitting devices,” IEEE J. Quantum Electron. 40(5), 557–563 (2004).
[CrossRef]

M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and P. Avouris, “Hot carrier electroluminescence from a single carbon nanotube,” Nano Lett. 4(6), 1063–1066 (2004).
[CrossRef]

2003 (1)

T. Trupke, J. Zhao, A. Wang, R. Corkish, and M. A. Green, “Very efficient light emission from bulk crystalline silicon,” Appl. Phys. Lett. 82(18), 2996–2998 (2003).
[CrossRef]

2002 (1)

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanoclusters-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

2001 (1)

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

2000 (3)

C. W. Liu, S. T. Chang, W. T. Liu, M.-J. Chen, and C.-F. Lin, “Hot carrier recombination model of visible electroluminescence from metal-oxide-silicon tunneling diodes,” Appl. Phys. Lett. 77(26), 4347–4349 (2000).
[CrossRef]

F. Giorgis, “Optical microcavities based on amorphous silicon-nitride Fabry-Perot structures,” Appl. Phys. Lett. 77(4), 522–524 (2000).
[CrossRef]

P. Photopoulos and A. G. Nassiopoulou, “Room- and low-temperature voltage tunable electroluminescence from a single layer of silicon quantum dots in between two thin SiO2 layers,” Appl. Phys. Lett. 77(12), 1816–1818 (2000).
[CrossRef]

1999 (2)

M. Zacharias, J. Bläsing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, “Thermal crystallization of amorphous Si/SiO2 superlattice,” Appl. Phys. Lett. 74(18), 2614–2616 (1999).
[CrossRef]

S. Fujita and N. Sugiyama, “Visible light-emitting devices with Schottky contacts on an ultrathin amorphous silicon layer containing silicon nanocrystals,” Appl. Phys. Lett. 74(2), 308–310 (1999).
[CrossRef]

1993 (2)

A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the Bremsstrahlung origin of hot-carrier-induced photons in Silicon device,” IEEE Tran. Electron Device 40(3), 577–582 (1993).
[CrossRef]

R. Tsu, “Silicon based quantum wells,” Nature 364(6432), 19 (1993).
[CrossRef]

1992 (1)

J. Bude, N. Sano, and A. Yoshii, “Hot-carrier luminescence in Si,” Phys. Rev. B Condens. Matter 45(11), 5848–5856 (1992).
[CrossRef] [PubMed]

1991 (1)

B. K. Ridley, “Hot electrons in low-dimensional structures,” Rep. Prog. Phys. 54(2), 169–256 (1991).
[CrossRef]

1990 (1)

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[CrossRef]

Aharoni, H.

H. Aharoni and M. du Plessis, “Low-operating-voltage integrated silicon light-emitting devices,” IEEE J. Quantum Electron. 40(5), 557–563 (2004).
[CrossRef]

Anopchenko, A.

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, and L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41(6), 912–915 (2009).
[CrossRef]

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

Avouris, P.

M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and P. Avouris, “Hot carrier electroluminescence from a single carbon nanotube,” Nano Lett. 4(6), 1063–1066 (2004).
[CrossRef]

Barrios, C. A.

Bellutti, P.

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, and L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41(6), 912–915 (2009).
[CrossRef]

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

Bigliardi, S.

A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the Bremsstrahlung origin of hot-carrier-induced photons in Silicon device,” IEEE Tran. Electron Device 40(3), 577–582 (1993).
[CrossRef]

Bläsing, J.

M. Zacharias, J. Bläsing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, “Thermal crystallization of amorphous Si/SiO2 superlattice,” Appl. Phys. Lett. 74(18), 2614–2616 (1999).
[CrossRef]

Bongiorno, C.

S. Boninelli, F. Iacona, G. Franzo, C. Bongiorno, C. Spinella, and F. Priolo, “Thermal evolution and photoluminescence properties of nanometric Si layers,” Nanotechnology 16(12), 3012–3016 (2005).
[CrossRef]

Boninelli, S.

S. Boninelli, F. Iacona, G. Franzo, C. Bongiorno, C. Spinella, and F. Priolo, “Thermal evolution and photoluminescence properties of nanometric Si layers,” Nanotechnology 16(12), 3012–3016 (2005).
[CrossRef]

Bude, J.

J. Bude, N. Sano, and A. Yoshii, “Hot-carrier luminescence in Si,” Phys. Rev. B Condens. Matter 45(11), 5848–5856 (1992).
[CrossRef] [PubMed]

Canham, L. T.

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[CrossRef]

Caristia, L.

A. Muscara, M. E. Castagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
[CrossRef]

Castagna, M. E.

A. Muscara, M. E. Castagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
[CrossRef]

Cen, Z.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, and A. A. Tseng, “Relationship between current transport and electroluminescence in Si+-implanted SiO2 thin films,” IEEE Trans. Electron. Dev. 56(11), 2785–2791 (2009).
[CrossRef]

Chang, S. T.

C. W. Liu, S. T. Chang, W. T. Liu, M.-J. Chen, and C.-F. Lin, “Hot carrier recombination model of visible electroluminescence from metal-oxide-silicon tunneling diodes,” Appl. Phys. Lett. 77(26), 4347–4349 (2000).
[CrossRef]

Chen, J.

M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and P. Avouris, “Hot carrier electroluminescence from a single carbon nanotube,” Nano Lett. 4(6), 1063–1066 (2004).
[CrossRef]

Chen, M.-J.

C. W. Liu, S. T. Chang, W. T. Liu, M.-J. Chen, and C.-F. Lin, “Hot carrier recombination model of visible electroluminescence from metal-oxide-silicon tunneling diodes,” Appl. Phys. Lett. 77(26), 4347–4349 (2000).
[CrossRef]

Chen, Q.

W. K. Tan, M. B. Yu, Q. Chen, W. Y. Loh, J. D. Ye, Z. H. Zhang, G. Q. Lo, and D.-L. Kwong, “Thin amorphous Si/Si3N4-based light emitting device prepared with low thermal budget,” IEEE Electron Device Lett. 29(3), 228–231 (2008).
[CrossRef]

W. K. Tan, M. B. Yu, Q. Chen, J. D. Ye, G. Q. Lo, and D. L. Kwong, “Re light emission from controlled multilayer stack comprising of thin amorphous silicon and silicon nitride layers,” Appl. Phys. Lett. 90(22), 221103 (2007).
[CrossRef]

Chen, T. P.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, and A. A. Tseng, “Relationship between current transport and electroluminescence in Si+-implanted SiO2 thin films,” IEEE Trans. Electron. Dev. 56(11), 2785–2791 (2009).
[CrossRef]

Coffa, S.

A. Muscara, M. E. Castagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
[CrossRef]

Corkish, R.

T. Trupke, J. Zhao, A. Wang, R. Corkish, and M. A. Green, “Very efficient light emission from bulk crystalline silicon,” Appl. Phys. Lett. 82(18), 2996–2998 (2003).
[CrossRef]

Creazzo, T.

Crupi, I.

C. D. Presti, A. Irrera, G. Franzò, I. Crupi, F. Priolo, F. Iacona, G. Di Stefano, A. Piana, D. Sanfilippo, and P. G. Fallica, “Photonic-crystal silicon nanoclusters light-emitting device,” Appl. Phys. Lett. 88(3), 033501 (2006).
[CrossRef]

Dal Negro, L.

S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
[CrossRef]

Di Stefano, G.

C. D. Presti, A. Irrera, G. Franzò, I. Crupi, F. Priolo, F. Iacona, G. Di Stefano, A. Piana, D. Sanfilippo, and P. G. Fallica, “Photonic-crystal silicon nanoclusters light-emitting device,” Appl. Phys. Lett. 88(3), 033501 (2006).
[CrossRef]

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanoclusters-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

Ding, L.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, and A. A. Tseng, “Relationship between current transport and electroluminescence in Si+-implanted SiO2 thin films,” IEEE Trans. Electron. Dev. 56(11), 2785–2791 (2009).
[CrossRef]

du Plessis, M.

H. Aharoni and M. du Plessis, “Low-operating-voltage integrated silicon light-emitting devices,” IEEE J. Quantum Electron. 40(5), 557–563 (2004).
[CrossRef]

Fallica, P. G.

C. D. Presti, A. Irrera, G. Franzò, I. Crupi, F. Priolo, F. Iacona, G. Di Stefano, A. Piana, D. Sanfilippo, and P. G. Fallica, “Photonic-crystal silicon nanoclusters light-emitting device,” Appl. Phys. Lett. 88(3), 033501 (2006).
[CrossRef]

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanoclusters-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

Fauchet, P. M.

M. Zacharias, J. Bläsing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, “Thermal crystallization of amorphous Si/SiO2 superlattice,” Appl. Phys. Lett. 74(18), 2614–2616 (1999).
[CrossRef]

Franzo, G.

S. Boninelli, F. Iacona, G. Franzo, C. Bongiorno, C. Spinella, and F. Priolo, “Thermal evolution and photoluminescence properties of nanometric Si layers,” Nanotechnology 16(12), 3012–3016 (2005).
[CrossRef]

Franzò, G.

C. D. Presti, A. Irrera, G. Franzò, I. Crupi, F. Priolo, F. Iacona, G. Di Stefano, A. Piana, D. Sanfilippo, and P. G. Fallica, “Photonic-crystal silicon nanoclusters light-emitting device,” Appl. Phys. Lett. 88(3), 033501 (2006).
[CrossRef]

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanoclusters-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

Freitag, M.

M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and P. Avouris, “Hot carrier electroluminescence from a single carbon nanotube,” Nano Lett. 4(6), 1063–1066 (2004).
[CrossRef]

Fujita, S.

S. Fujita and N. Sugiyama, “Visible light-emitting devices with Schottky contacts on an ultrathin amorphous silicon layer containing silicon nanocrystals,” Appl. Phys. Lett. 74(2), 308–310 (1999).
[CrossRef]

Gaburro, Z.

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

Gal, M.

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

Giorgis, F.

F. Giorgis, “Optical microcavities based on amorphous silicon-nitride Fabry-Perot structures,” Appl. Phys. Lett. 77(4), 522–524 (2000).
[CrossRef]

Green, M. A.

T. Trupke, J. Zhao, A. Wang, R. Corkish, and M. A. Green, “Very efficient light emission from bulk crystalline silicon,” Appl. Phys. Lett. 82(18), 2996–2998 (2003).
[CrossRef]

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

Hirschman, K.

M. Zacharias, J. Bläsing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, “Thermal crystallization of amorphous Si/SiO2 superlattice,” Appl. Phys. Lett. 74(18), 2614–2616 (1999).
[CrossRef]

Iacona, F.

C. D. Presti, A. Irrera, G. Franzò, I. Crupi, F. Priolo, F. Iacona, G. Di Stefano, A. Piana, D. Sanfilippo, and P. G. Fallica, “Photonic-crystal silicon nanoclusters light-emitting device,” Appl. Phys. Lett. 88(3), 033501 (2006).
[CrossRef]

S. Boninelli, F. Iacona, G. Franzo, C. Bongiorno, C. Spinella, and F. Priolo, “Thermal evolution and photoluminescence properties of nanometric Si layers,” Nanotechnology 16(12), 3012–3016 (2005).
[CrossRef]

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanoclusters-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

Irrera, A.

C. D. Presti, A. Irrera, G. Franzò, I. Crupi, F. Priolo, F. Iacona, G. Di Stefano, A. Piana, D. Sanfilippo, and P. G. Fallica, “Photonic-crystal silicon nanoclusters light-emitting device,” Appl. Phys. Lett. 88(3), 033501 (2006).
[CrossRef]

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanoclusters-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

Kimerling, L. C.

Kondo, M.

V. Svrcek, D. Mariotti, and M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in warter,” Opt. Express 17, 521–527 (2010).

Kwong, D. L.

W. K. Tan, M. B. Yu, Q. Chen, J. D. Ye, G. Q. Lo, and D. L. Kwong, “Re light emission from controlled multilayer stack comprising of thin amorphous silicon and silicon nitride layers,” Appl. Phys. Lett. 90(22), 221103 (2007).
[CrossRef]

Kwong, D.-L.

W. K. Tan, M. B. Yu, Q. Chen, W. Y. Loh, J. D. Ye, Z. H. Zhang, G. Q. Lo, and D.-L. Kwong, “Thin amorphous Si/Si3N4-based light emitting device prepared with low thermal budget,” IEEE Electron Device Lett. 29(3), 228–231 (2008).
[CrossRef]

Lacaita, A. L.

A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the Bremsstrahlung origin of hot-carrier-induced photons in Silicon device,” IEEE Tran. Electron Device 40(3), 577–582 (1993).
[CrossRef]

Leonardi, S.

A. Muscara, M. E. Castagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
[CrossRef]

Li, R.

S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
[CrossRef]

Lin, C.-F.

C. W. Liu, S. T. Chang, W. T. Liu, M.-J. Chen, and C.-F. Lin, “Hot carrier recombination model of visible electroluminescence from metal-oxide-silicon tunneling diodes,” Appl. Phys. Lett. 77(26), 4347–4349 (2000).
[CrossRef]

Lipson, M.

Liu, C. W.

C. W. Liu, S. T. Chang, W. T. Liu, M.-J. Chen, and C.-F. Lin, “Hot carrier recombination model of visible electroluminescence from metal-oxide-silicon tunneling diodes,” Appl. Phys. Lett. 77(26), 4347–4349 (2000).
[CrossRef]

Liu, J.

Liu, W. T.

C. W. Liu, S. T. Chang, W. T. Liu, M.-J. Chen, and C.-F. Lin, “Hot carrier recombination model of visible electroluminescence from metal-oxide-silicon tunneling diodes,” Appl. Phys. Lett. 77(26), 4347–4349 (2000).
[CrossRef]

Liu, Y.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, and A. A. Tseng, “Relationship between current transport and electroluminescence in Si+-implanted SiO2 thin films,” IEEE Trans. Electron. Dev. 56(11), 2785–2791 (2009).
[CrossRef]

Lo, G. Q.

W. K. Tan, M. B. Yu, Q. Chen, W. Y. Loh, J. D. Ye, Z. H. Zhang, G. Q. Lo, and D.-L. Kwong, “Thin amorphous Si/Si3N4-based light emitting device prepared with low thermal budget,” IEEE Electron Device Lett. 29(3), 228–231 (2008).
[CrossRef]

W. K. Tan, M. B. Yu, Q. Chen, J. D. Ye, G. Q. Lo, and D. L. Kwong, “Re light emission from controlled multilayer stack comprising of thin amorphous silicon and silicon nitride layers,” Appl. Phys. Lett. 90(22), 221103 (2007).
[CrossRef]

Loh, W. Y.

W. K. Tan, M. B. Yu, Q. Chen, W. Y. Loh, J. D. Ye, Z. H. Zhang, G. Q. Lo, and D.-L. Kwong, “Thin amorphous Si/Si3N4-based light emitting device prepared with low thermal budget,” IEEE Electron Device Lett. 29(3), 228–231 (2008).
[CrossRef]

Lorenti, S.

A. Muscara, M. E. Castagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
[CrossRef]

Manfredi, M.

A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the Bremsstrahlung origin of hot-carrier-induced photons in Silicon device,” IEEE Tran. Electron Device 40(3), 577–582 (1993).
[CrossRef]

Marchena, E.

Marconi, A.

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, and L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41(6), 912–915 (2009).
[CrossRef]

Mariotti, D.

V. Svrcek, D. Mariotti, and M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in warter,” Opt. Express 17, 521–527 (2010).

Martel, R.

M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and P. Avouris, “Hot carrier electroluminescence from a single carbon nanotube,” Nano Lett. 4(6), 1063–1066 (2004).
[CrossRef]

Michel, J.

Miritello, M.

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanoclusters-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

Misewich, J. A.

M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and P. Avouris, “Hot carrier electroluminescence from a single carbon nanotube,” Nano Lett. 4(6), 1063–1066 (2004).
[CrossRef]

Moser, E.

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, and L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41(6), 912–915 (2009).
[CrossRef]

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

Murakowski, J.

Muscara, A.

A. Muscara, M. E. Castagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
[CrossRef]

Nassiopoulou, A. G.

P. Photopoulos and A. G. Nassiopoulou, “Room- and low-temperature voltage tunable electroluminescence from a single layer of silicon quantum dots in between two thin SiO2 layers,” Appl. Phys. Lett. 77(12), 1816–1818 (2000).
[CrossRef]

Pacifici, D.

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanoclusters-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

Pavesi, L.

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, and L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41(6), 912–915 (2009).
[CrossRef]

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

Perebeinos, V.

M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and P. Avouris, “Hot carrier electroluminescence from a single carbon nanotube,” Nano Lett. 4(6), 1063–1066 (2004).
[CrossRef]

Photopoulos, P.

P. Photopoulos and A. G. Nassiopoulou, “Room- and low-temperature voltage tunable electroluminescence from a single layer of silicon quantum dots in between two thin SiO2 layers,” Appl. Phys. Lett. 77(12), 1816–1818 (2000).
[CrossRef]

Piana, A.

C. D. Presti, A. Irrera, G. Franzò, I. Crupi, F. Priolo, F. Iacona, G. Di Stefano, A. Piana, D. Sanfilippo, and P. G. Fallica, “Photonic-crystal silicon nanoclusters light-emitting device,” Appl. Phys. Lett. 88(3), 033501 (2006).
[CrossRef]

Prather, D. W.

Presti, C. D.

C. D. Presti, A. Irrera, G. Franzò, I. Crupi, F. Priolo, F. Iacona, G. Di Stefano, A. Piana, D. Sanfilippo, and P. G. Fallica, “Photonic-crystal silicon nanoclusters light-emitting device,” Appl. Phys. Lett. 88(3), 033501 (2006).
[CrossRef]

Prezioso, S.

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, and L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41(6), 912–915 (2009).
[CrossRef]

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

Priolo, F.

C. D. Presti, A. Irrera, G. Franzò, I. Crupi, F. Priolo, F. Iacona, G. Di Stefano, A. Piana, D. Sanfilippo, and P. G. Fallica, “Photonic-crystal silicon nanoclusters light-emitting device,” Appl. Phys. Lett. 88(3), 033501 (2006).
[CrossRef]

S. Boninelli, F. Iacona, G. Franzo, C. Bongiorno, C. Spinella, and F. Priolo, “Thermal evolution and photoluminescence properties of nanometric Si layers,” Nanotechnology 16(12), 3012–3016 (2005).
[CrossRef]

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanoclusters-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

Pucker, G.

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, and L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41(6), 912–915 (2009).
[CrossRef]

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

Redding, B.

Reece, P. J.

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

Ridley, B. K.

B. K. Ridley, “Hot electrons in low-dimensional structures,” Rep. Prog. Phys. 54(2), 169–256 (1991).
[CrossRef]

Sanfilippo, D.

C. D. Presti, A. Irrera, G. Franzò, I. Crupi, F. Priolo, F. Iacona, G. Di Stefano, A. Piana, D. Sanfilippo, and P. G. Fallica, “Photonic-crystal silicon nanoclusters light-emitting device,” Appl. Phys. Lett. 88(3), 033501 (2006).
[CrossRef]

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanoclusters-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

Sano, N.

J. Bude, N. Sano, and A. Yoshii, “Hot-carrier luminescence in Si,” Phys. Rev. B Condens. Matter 45(11), 5848–5856 (1992).
[CrossRef] [PubMed]

Spinella, C.

S. Boninelli, F. Iacona, G. Franzo, C. Bongiorno, C. Spinella, and F. Priolo, “Thermal evolution and photoluminescence properties of nanometric Si layers,” Nanotechnology 16(12), 3012–3016 (2005).
[CrossRef]

Stein, A.

M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and P. Avouris, “Hot carrier electroluminescence from a single carbon nanotube,” Nano Lett. 4(6), 1063–1066 (2004).
[CrossRef]

Sugiyama, N.

S. Fujita and N. Sugiyama, “Visible light-emitting devices with Schottky contacts on an ultrathin amorphous silicon layer containing silicon nanocrystals,” Appl. Phys. Lett. 74(2), 308–310 (1999).
[CrossRef]

Sun, X.

Svrcek, V.

V. Svrcek, D. Mariotti, and M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in warter,” Opt. Express 17, 521–527 (2010).

Tan, W. K.

W. K. Tan, M. B. Yu, Q. Chen, W. Y. Loh, J. D. Ye, Z. H. Zhang, G. Q. Lo, and D.-L. Kwong, “Thin amorphous Si/Si3N4-based light emitting device prepared with low thermal budget,” IEEE Electron Device Lett. 29(3), 228–231 (2008).
[CrossRef]

W. K. Tan, M. B. Yu, Q. Chen, J. D. Ye, G. Q. Lo, and D. L. Kwong, “Re light emission from controlled multilayer stack comprising of thin amorphous silicon and silicon nitride layers,” Appl. Phys. Lett. 90(22), 221103 (2007).
[CrossRef]

Trupke, T.

T. Trupke, J. Zhao, A. Wang, R. Corkish, and M. A. Green, “Very efficient light emission from bulk crystalline silicon,” Appl. Phys. Lett. 82(18), 2996–2998 (2003).
[CrossRef]

Tsang, J. C.

M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and P. Avouris, “Hot carrier electroluminescence from a single carbon nanotube,” Nano Lett. 4(6), 1063–1066 (2004).
[CrossRef]

Tseng, A. A.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, and A. A. Tseng, “Relationship between current transport and electroluminescence in Si+-implanted SiO2 thin films,” IEEE Trans. Electron. Dev. 56(11), 2785–2791 (2009).
[CrossRef]

Tsu, R.

R. Tsu, “Silicon based quantum wells,” Nature 364(6432), 19 (1993).
[CrossRef]

Tsybeskov, L.

M. Zacharias, J. Bläsing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, “Thermal crystallization of amorphous Si/SiO2 superlattice,” Appl. Phys. Lett. 74(18), 2614–2616 (1999).
[CrossRef]

Vanzetti, L.

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, and L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41(6), 912–915 (2009).
[CrossRef]

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

Veit, P.

M. Zacharias, J. Bläsing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, “Thermal crystallization of amorphous Si/SiO2 superlattice,” Appl. Phys. Lett. 74(18), 2614–2616 (1999).
[CrossRef]

Wang, A.

T. Trupke, J. Zhao, A. Wang, R. Corkish, and M. A. Green, “Very efficient light emission from bulk crystalline silicon,” Appl. Phys. Lett. 82(18), 2996–2998 (2003).
[CrossRef]

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

Wang, M.

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, and L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41(6), 912–915 (2009).
[CrossRef]

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

Wong, J. I.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, and A. A. Tseng, “Relationship between current transport and electroluminescence in Si+-implanted SiO2 thin films,” IEEE Trans. Electron. Dev. 56(11), 2785–2791 (2009).
[CrossRef]

Yang, M.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, and A. A. Tseng, “Relationship between current transport and electroluminescence in Si+-implanted SiO2 thin films,” IEEE Trans. Electron. Dev. 56(11), 2785–2791 (2009).
[CrossRef]

Ye, J. D.

W. K. Tan, M. B. Yu, Q. Chen, W. Y. Loh, J. D. Ye, Z. H. Zhang, G. Q. Lo, and D.-L. Kwong, “Thin amorphous Si/Si3N4-based light emitting device prepared with low thermal budget,” IEEE Electron Device Lett. 29(3), 228–231 (2008).
[CrossRef]

W. K. Tan, M. B. Yu, Q. Chen, J. D. Ye, G. Q. Lo, and D. L. Kwong, “Re light emission from controlled multilayer stack comprising of thin amorphous silicon and silicon nitride layers,” Appl. Phys. Lett. 90(22), 221103 (2007).
[CrossRef]

Yerci, S.

S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
[CrossRef]

Yoshii, A.

J. Bude, N. Sano, and A. Yoshii, “Hot-carrier luminescence in Si,” Phys. Rev. B Condens. Matter 45(11), 5848–5856 (1992).
[CrossRef] [PubMed]

Yu, M. B.

W. K. Tan, M. B. Yu, Q. Chen, W. Y. Loh, J. D. Ye, Z. H. Zhang, G. Q. Lo, and D.-L. Kwong, “Thin amorphous Si/Si3N4-based light emitting device prepared with low thermal budget,” IEEE Electron Device Lett. 29(3), 228–231 (2008).
[CrossRef]

W. K. Tan, M. B. Yu, Q. Chen, J. D. Ye, G. Q. Lo, and D. L. Kwong, “Re light emission from controlled multilayer stack comprising of thin amorphous silicon and silicon nitride layers,” Appl. Phys. Lett. 90(22), 221103 (2007).
[CrossRef]

Zacharias, M.

M. Zacharias, J. Bläsing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, “Thermal crystallization of amorphous Si/SiO2 superlattice,” Appl. Phys. Lett. 74(18), 2614–2616 (1999).
[CrossRef]

Zappa, F.

A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the Bremsstrahlung origin of hot-carrier-induced photons in Silicon device,” IEEE Tran. Electron Device 40(3), 577–582 (1993).
[CrossRef]

Zhang, Z. H.

W. K. Tan, M. B. Yu, Q. Chen, W. Y. Loh, J. D. Ye, Z. H. Zhang, G. Q. Lo, and D.-L. Kwong, “Thin amorphous Si/Si3N4-based light emitting device prepared with low thermal budget,” IEEE Electron Device Lett. 29(3), 228–231 (2008).
[CrossRef]

Zhao, J.

T. Trupke, J. Zhao, A. Wang, R. Corkish, and M. A. Green, “Very efficient light emission from bulk crystalline silicon,” Appl. Phys. Lett. 82(18), 2996–2998 (2003).
[CrossRef]

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

Zhu, F.

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, and A. A. Tseng, “Relationship between current transport and electroluminescence in Si+-implanted SiO2 thin films,” IEEE Trans. Electron. Dev. 56(11), 2785–2791 (2009).
[CrossRef]

Appl. Phys. Lett. (11)

M. Zacharias, J. Bläsing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, “Thermal crystallization of amorphous Si/SiO2 superlattice,” Appl. Phys. Lett. 74(18), 2614–2616 (1999).
[CrossRef]

C. W. Liu, S. T. Chang, W. T. Liu, M.-J. Chen, and C.-F. Lin, “Hot carrier recombination model of visible electroluminescence from metal-oxide-silicon tunneling diodes,” Appl. Phys. Lett. 77(26), 4347–4349 (2000).
[CrossRef]

T. Trupke, J. Zhao, A. Wang, R. Corkish, and M. A. Green, “Very efficient light emission from bulk crystalline silicon,” Appl. Phys. Lett. 82(18), 2996–2998 (2003).
[CrossRef]

S. Fujita and N. Sugiyama, “Visible light-emitting devices with Schottky contacts on an ultrathin amorphous silicon layer containing silicon nanocrystals,” Appl. Phys. Lett. 74(2), 308–310 (1999).
[CrossRef]

P. Photopoulos and A. G. Nassiopoulou, “Room- and low-temperature voltage tunable electroluminescence from a single layer of silicon quantum dots in between two thin SiO2 layers,” Appl. Phys. Lett. 77(12), 1816–1818 (2000).
[CrossRef]

C. D. Presti, A. Irrera, G. Franzò, I. Crupi, F. Priolo, F. Iacona, G. Di Stefano, A. Piana, D. Sanfilippo, and P. G. Fallica, “Photonic-crystal silicon nanoclusters light-emitting device,” Appl. Phys. Lett. 88(3), 033501 (2006).
[CrossRef]

F. Giorgis, “Optical microcavities based on amorphous silicon-nitride Fabry-Perot structures,” Appl. Phys. Lett. 77(4), 522–524 (2000).
[CrossRef]

W. K. Tan, M. B. Yu, Q. Chen, J. D. Ye, G. Q. Lo, and D. L. Kwong, “Re light emission from controlled multilayer stack comprising of thin amorphous silicon and silicon nitride layers,” Appl. Phys. Lett. 90(22), 221103 (2007).
[CrossRef]

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990).
[CrossRef]

F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, and P. G. Fallica, “Electroluminescence at 1.54 µm in Er-doped Si nanoclusters-based devices,” Appl. Phys. Lett. 81(17), 3242–3244 (2002).
[CrossRef]

S. Yerci, R. Li, and L. Dal Negro, “Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes,” Appl. Phys. Lett. 97(8), 081109 (2010).
[CrossRef]

IEEE Electron Device Lett. (1)

W. K. Tan, M. B. Yu, Q. Chen, W. Y. Loh, J. D. Ye, Z. H. Zhang, G. Q. Lo, and D.-L. Kwong, “Thin amorphous Si/Si3N4-based light emitting device prepared with low thermal budget,” IEEE Electron Device Lett. 29(3), 228–231 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Aharoni and M. du Plessis, “Low-operating-voltage integrated silicon light-emitting devices,” IEEE J. Quantum Electron. 40(5), 557–563 (2004).
[CrossRef]

IEEE Tran. Electron Device (1)

A. L. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, “On the Bremsstrahlung origin of hot-carrier-induced photons in Silicon device,” IEEE Tran. Electron Device 40(3), 577–582 (1993).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

L. Ding, T. P. Chen, M. Yang, J. I. Wong, Z. Cen, Y. Liu, F. Zhu, and A. A. Tseng, “Relationship between current transport and electroluminescence in Si+-implanted SiO2 thin films,” IEEE Trans. Electron. Dev. 56(11), 2785–2791 (2009).
[CrossRef]

J. Appl. Phys. (2)

A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, M. Wang, L. Pavesi, G. Pucker, and P. Bellutti, “Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers,” J. Appl. Phys. 106(3), 033104 (2009).
[CrossRef]

S. Prezioso, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys. 104(6), 063103 (2008).
[CrossRef]

J. Lumin. (1)

A. Muscara, M. E. Castagna, S. Leonardi, S. Coffa, L. Caristia, and S. Lorenti, “Design and electro-optical characterization of Si-based resonant cavity light emitting devices at 850 nm,” J. Lumin. 121(2), 293–297 (2006).
[CrossRef]

Nano Lett. (1)

M. Freitag, V. Perebeinos, J. Chen, A. Stein, J. C. Tsang, J. A. Misewich, R. Martel, and P. Avouris, “Hot carrier electroluminescence from a single carbon nanotube,” Nano Lett. 4(6), 1063–1066 (2004).
[CrossRef]

Nanotechnology (1)

S. Boninelli, F. Iacona, G. Franzo, C. Bongiorno, C. Spinella, and F. Priolo, “Thermal evolution and photoluminescence properties of nanometric Si layers,” Nanotechnology 16(12), 3012–3016 (2005).
[CrossRef]

Nature (2)

R. Tsu, “Silicon based quantum wells,” Nature 364(6432), 19 (1993).
[CrossRef]

M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature 412(6849), 805–808 (2001).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter (1)

J. Bude, N. Sano, and A. Yoshii, “Hot-carrier luminescence in Si,” Phys. Rev. B Condens. Matter 45(11), 5848–5856 (1992).
[CrossRef] [PubMed]

Physica E (1)

M. Wang, A. Anopchenko, A. Marconi, E. Moser, S. Prezioso, L. Pavesi, G. Pucker, P. Bellutti, and L. Vanzetti, “Light emitting devices based on nanocrystalline-silicon multilayer structure,” Physica E 41(6), 912–915 (2009).
[CrossRef]

Rep. Prog. Phys. (1)

B. K. Ridley, “Hot electrons in low-dimensional structures,” Rep. Prog. Phys. 54(2), 169–256 (1991).
[CrossRef]

Other (2)

N. Tessler, and G. Eisenstein, “Transient carrier response in multiple quantum well lasers,” in Proceeding of 13th IEEE Semicon. Laser Conf. pp. 44–45 (1992).

S. Sze, Physics of Semiconductor Devices, (Wiley, New York, 1981), pp 45–47.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Raman spectra of as-deposited sample (i.e., without annealing) and the samples annealed for 1 hour at the temperature of 700, 900, 1000, and 1100 °C.

Fig. 2
Fig. 2

High resolution transmission electron microscopic (HR-TEM) images of α-Si/SiO2 multilayers (a) 10-nm-Si/ 3-nm-SiO2 and (b) 3-nm-Si/3-nm-SiO2.

Fig. 3
Fig. 3

(a) 3D schematic and EL photo of Type-I device with line emission. (b) 3D schematic and EL photo of Type-II device with interdigitated finger electrode. (c) Simplified process flow showing the key steps of fabricating a lateral-current-injection nc-Si/SiO2 MQW LED with interdigitated finger electrodes. (i) Deposition of nc-Si/SiO2 MQWs. (ii) Active region patterning and etching. (iii) Deposition of poly-Si and implantation to form p + and n + electrode. (iv) Poly-Si patterning and etching to form a grating-like structure on the active region.

Fig. 4
Fig. 4

(a) EL spectrum under a reverse bias of 10 V for Type-I device with line emission width of 1 µm. (b) I-V characteristics and the integrated EL intensity as a function of applied voltage. The nc-Si film thickness is 10 nm.

Fig. 5
Fig. 5

(a) EL spectra under a reverse voltage of 10 V for the Type-II device with w = 1 µm and a = 2 µm. (b) EL spectra under a reverse voltage of 10 V for the Type-II device with w = 1 µm and a = 10 µm. (c) Calculated transmission spectra of Type-II device with w = 1 µm and a = 2 µm. (d) Calculated transmission spectra of Type-II device with w = 1 µm and a = 10 µm. The nc-Si film thickness is 10 nm for the device in this figure.

Fig. 6
Fig. 6

EL spectra of Type-II devices under the reverse bias of 10 V for the devices with different nc-Si film thicknesses. The measured devices have the finger width of 0.5 µm and spacing of 10 µm.

Fig. 7
Fig. 7

(a) Cross-sectional schematic the lateral-current-injection LED with the same emission window size as the lateral-current-injection LED illustrated in Fig. 3(b). (b) EL spectra of the lateral- and vertical-current-injection LEDs under the same voltage of 10 V. The nc-Si film thickness is 10 nm.

Fig. 8
Fig. 8

(a) A proposed structure of lateral-current-injection LED based on truncated nc-Si/SiO2 MQWs with F-P cavity formed by bottom and top Bragg reflectors consisting of alternating SiO2 and Si3N4 films. (b) The cross-sectional schematic of a proposed on-chip waveguided LED with 1.55-µm emission based on the lateral-current -injection scheme reported in this study.

Metrics