Abstract

A novel, miniaturized optoelectronic tweezers (OET) system has been developed using a CMOS-controlled GaN micro-pixelated light emitting diode (LED) array as an integrated micro-light source. The micro-LED array offers spatio-temporal and intensity control of the emission pattern, enabling the creation of reconfigurable virtual electrodes to achieve OET. In order to analyse the mechanism responsible for particle manipulation in this OET system, the average particle velocity, electrical field and forces applied to the particles were characterized and simulated. The capability of this miniaturized OET system for manipulating and trapping multiple particles including polystyrene beads and live cells has been successfully demonstrated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Xie, D. S. Haliyo, and S. Régnier, “A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly,” Nanotechnology 20(21), 215301 (2009).
    [CrossRef] [PubMed]
  2. D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
    [CrossRef] [PubMed]
  3. R. Pethig, “Review Article-Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
    [CrossRef]
  4. G. Vieira, T. Henighan, A. Chen, A. J. Hauser, F. Y. Yang, J. J. Chalmers, and R. Sooryakumar, “Magnetic wire traps and programmable manipulation of biological cells,” Phys. Rev. Lett. 103(12), 128101 (2009).
    [CrossRef] [PubMed]
  5. Y. Yamakoshi, Y. Koitabashi, N. Nakajima, and T. Miwa, “Yeast cell trapping in ultrasonic wave field using ultrasonic contrast agent,” Jpn. J. Appl. Phys. Part 1 - Regul, Pap. Brief Commun. Rev. Pap. 45, 4712–4717 (2006).
  6. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [CrossRef] [PubMed]
  7. S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, “The resolution of optical traps created by Light Induced Dielectrophoresis (LIDEP),” Opt. Express 15(20), 12619–12626 (2007).
    [CrossRef] [PubMed]
  8. H. Hwang, Y. J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
    [CrossRef] [PubMed]
  9. J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
    [CrossRef] [PubMed]
  10. J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
    [CrossRef]
  11. T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
    [CrossRef]
  12. R. A. Street, Technology and Applications of Amorphous Silicon (Springer, New York, 2000).
  13. J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, “Parallel single-cell light-induced electroporation and dielectrophoretic manipulation,” Lab Chip 9(12), 1714–1720 (2009).
    [CrossRef] [PubMed]
  14. B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors 9(11), 9255–9274 (2009).
    [CrossRef]

2010

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[CrossRef] [PubMed]

R. Pethig, “Review Article-Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
[CrossRef]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

2009

G. Vieira, T. Henighan, A. Chen, A. J. Hauser, F. Y. Yang, J. J. Chalmers, and R. Sooryakumar, “Magnetic wire traps and programmable manipulation of biological cells,” Phys. Rev. Lett. 103(12), 128101 (2009).
[CrossRef] [PubMed]

J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, “Parallel single-cell light-induced electroporation and dielectrophoretic manipulation,” Lab Chip 9(12), 1714–1720 (2009).
[CrossRef] [PubMed]

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors 9(11), 9255–9274 (2009).
[CrossRef]

H. Xie, D. S. Haliyo, and S. Régnier, “A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly,” Nanotechnology 20(21), 215301 (2009).
[CrossRef] [PubMed]

2008

H. Hwang, Y. J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[CrossRef] [PubMed]

J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[CrossRef] [PubMed]

2007

2006

Y. Yamakoshi, Y. Koitabashi, N. Nakajima, and T. Miwa, “Yeast cell trapping in ultrasonic wave field using ultrasonic contrast agent,” Jpn. J. Appl. Phys. Part 1 - Regul, Pap. Brief Commun. Rev. Pap. 45, 4712–4717 (2006).

2005

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

2003

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef]

Chalmers, J. J.

G. Vieira, T. Henighan, A. Chen, A. J. Hauser, F. Y. Yang, J. J. Chalmers, and R. Sooryakumar, “Magnetic wire traps and programmable manipulation of biological cells,” Phys. Rev. Lett. 103(12), 128101 (2009).
[CrossRef] [PubMed]

Chen, A.

G. Vieira, T. Henighan, A. Chen, A. J. Hauser, F. Y. Yang, J. J. Chalmers, and R. Sooryakumar, “Magnetic wire traps and programmable manipulation of biological cells,” Phys. Rev. Lett. 103(12), 128101 (2009).
[CrossRef] [PubMed]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Choi, W.

H. Hwang, Y. J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[CrossRef] [PubMed]

Choi, Y. J.

H. Hwang, Y. J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[CrossRef] [PubMed]

Dawson, M. D.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors 9(11), 9255–9274 (2009).
[CrossRef]

Dholakia, K.

Girkin, J. M.

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors 9(11), 9255–9274 (2009).
[CrossRef]

Gong, Z.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors 9(11), 9255–9274 (2009).
[CrossRef]

Green, R. P.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

Gu, E.

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors 9(11), 9255–9274 (2009).
[CrossRef]

Gu, E. D.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

Guilhabert, B.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

Gunn-Moore, F.

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[CrossRef] [PubMed]

Haliyo, D. S.

H. Xie, D. S. Haliyo, and S. Régnier, “A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly,” Nanotechnology 20(21), 215301 (2009).
[CrossRef] [PubMed]

Hauser, A. J.

G. Vieira, T. Henighan, A. Chen, A. J. Hauser, F. Y. Yang, J. J. Chalmers, and R. Sooryakumar, “Magnetic wire traps and programmable manipulation of biological cells,” Phys. Rev. Lett. 103(12), 128101 (2009).
[CrossRef] [PubMed]

Henderson, R. K.

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors 9(11), 9255–9274 (2009).
[CrossRef]

Henighan, T.

G. Vieira, T. Henighan, A. Chen, A. J. Hauser, F. Y. Yang, J. J. Chalmers, and R. Sooryakumar, “Magnetic wire traps and programmable manipulation of biological cells,” Phys. Rev. Lett. 103(12), 128101 (2009).
[CrossRef] [PubMed]

Hsu, H. Y.

J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, “Parallel single-cell light-induced electroporation and dielectrophoretic manipulation,” Lab Chip 9(12), 1714–1720 (2009).
[CrossRef] [PubMed]

J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[CrossRef] [PubMed]

Hwang, H.

H. Hwang, Y. J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[CrossRef] [PubMed]

Jamshidi, A.

J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, “Parallel single-cell light-induced electroporation and dielectrophoretic manipulation,” Lab Chip 9(12), 1714–1720 (2009).
[CrossRef] [PubMed]

J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[CrossRef] [PubMed]

Jang, J.

H. Hwang, Y. J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[CrossRef] [PubMed]

Kamei, T.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef]

Kelly, A. E.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

Kim, S. H.

H. Hwang, Y. J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[CrossRef] [PubMed]

Koitabashi, Y.

Y. Yamakoshi, Y. Koitabashi, N. Nakajima, and T. Miwa, “Yeast cell trapping in ultrasonic wave field using ultrasonic contrast agent,” Jpn. J. Appl. Phys. Part 1 - Regul, Pap. Brief Commun. Rev. Pap. 45, 4712–4717 (2006).

Krauss, T. F.

Massoubre, D.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

Mathies, R. A.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef]

Mazilu, M.

McKendry, J.

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors 9(11), 9255–9274 (2009).
[CrossRef]

McKendry, J. J. D.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

Miwa, T.

Y. Yamakoshi, Y. Koitabashi, N. Nakajima, and T. Miwa, “Yeast cell trapping in ultrasonic wave field using ultrasonic contrast agent,” Jpn. J. Appl. Phys. Part 1 - Regul, Pap. Brief Commun. Rev. Pap. 45, 4712–4717 (2006).

Muir, K. R.

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors 9(11), 9255–9274 (2009).
[CrossRef]

Nakajima, N.

Y. Yamakoshi, Y. Koitabashi, N. Nakajima, and T. Miwa, “Yeast cell trapping in ultrasonic wave field using ultrasonic contrast agent,” Jpn. J. Appl. Phys. Part 1 - Regul, Pap. Brief Commun. Rev. Pap. 45, 4712–4717 (2006).

Neale, S.

J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, “Parallel single-cell light-induced electroporation and dielectrophoretic manipulation,” Lab Chip 9(12), 1714–1720 (2009).
[CrossRef] [PubMed]

Neale, S. L.

Ohta, A. T.

J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, “Parallel single-cell light-induced electroporation and dielectrophoretic manipulation,” Lab Chip 9(12), 1714–1720 (2009).
[CrossRef] [PubMed]

J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[CrossRef] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Paegel, B. M.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef]

Park, J. K.

H. Hwang, Y. J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[CrossRef] [PubMed]

Pethig, R.

R. Pethig, “Review Article-Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
[CrossRef]

Rae, B. R.

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors 9(11), 9255–9274 (2009).
[CrossRef]

Régnier, S.

H. Xie, D. S. Haliyo, and S. Régnier, “A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly,” Nanotechnology 20(21), 215301 (2009).
[CrossRef] [PubMed]

Renshaw, D.

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors 9(11), 9255–9274 (2009).
[CrossRef]

Scherer, J. R.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef]

Skelley, A. M.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef]

Sooryakumar, R.

G. Vieira, T. Henighan, A. Chen, A. J. Hauser, F. Y. Yang, J. J. Chalmers, and R. Sooryakumar, “Magnetic wire traps and programmable manipulation of biological cells,” Phys. Rev. Lett. 103(12), 128101 (2009).
[CrossRef] [PubMed]

Stevenson, D. J.

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[CrossRef] [PubMed]

Street, R. A.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef]

Valley, J. K.

J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, “Parallel single-cell light-induced electroporation and dielectrophoretic manipulation,” Lab Chip 9(12), 1714–1720 (2009).
[CrossRef] [PubMed]

J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[CrossRef] [PubMed]

Vieira, G.

G. Vieira, T. Henighan, A. Chen, A. J. Hauser, F. Y. Yang, J. J. Chalmers, and R. Sooryakumar, “Magnetic wire traps and programmable manipulation of biological cells,” Phys. Rev. Lett. 103(12), 128101 (2009).
[CrossRef] [PubMed]

Wilson, J. I. B.

Wu, M. C.

J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, “Parallel single-cell light-induced electroporation and dielectrophoretic manipulation,” Lab Chip 9(12), 1714–1720 (2009).
[CrossRef] [PubMed]

J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[CrossRef] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Xie, H.

H. Xie, D. S. Haliyo, and S. Régnier, “A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly,” Nanotechnology 20(21), 215301 (2009).
[CrossRef] [PubMed]

Yamakoshi, Y.

Y. Yamakoshi, Y. Koitabashi, N. Nakajima, and T. Miwa, “Yeast cell trapping in ultrasonic wave field using ultrasonic contrast agent,” Jpn. J. Appl. Phys. Part 1 - Regul, Pap. Brief Commun. Rev. Pap. 45, 4712–4717 (2006).

Yang, F. Y.

G. Vieira, T. Henighan, A. Chen, A. J. Hauser, F. Y. Yang, J. J. Chalmers, and R. Sooryakumar, “Magnetic wire traps and programmable manipulation of biological cells,” Phys. Rev. Lett. 103(12), 128101 (2009).
[CrossRef] [PubMed]

Anal. Chem.

T. Kamei, B. M. Paegel, J. R. Scherer, A. M. Skelley, R. A. Street, and R. A. Mathies, “Integrated hydrogenated amorphous Si photodiode detector for microfluidic bioanalytical devices,” Anal. Chem. 75(20), 5300–5305 (2003).
[CrossRef]

Biomicrofluidics

R. Pethig, “Review Article-Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics 4(2), 022811 (2010).
[CrossRef]

Electrophoresis

H. Hwang, Y. J. Choi, W. Choi, S. H. Kim, J. Jang, and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis 29(6), 1203–1212 (2008).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[CrossRef]

J. Biomed. Opt.

D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light forces the pace: optical manipulation for biophotonics,” J. Biomed. Opt. 15(4), 041503 (2010).
[CrossRef] [PubMed]

J. Microelectromech. Syst.

J. K. Valley, A. Jamshidi, A. T. Ohta, H. Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17(2), 342–350 (2008).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. Part 1 - Regul, Pap. Brief Commun. Rev. Pap.

Y. Yamakoshi, Y. Koitabashi, N. Nakajima, and T. Miwa, “Yeast cell trapping in ultrasonic wave field using ultrasonic contrast agent,” Jpn. J. Appl. Phys. Part 1 - Regul, Pap. Brief Commun. Rev. Pap. 45, 4712–4717 (2006).

Lab Chip

J. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, and M. C. Wu, “Parallel single-cell light-induced electroporation and dielectrophoretic manipulation,” Lab Chip 9(12), 1714–1720 (2009).
[CrossRef] [PubMed]

Nanotechnology

H. Xie, D. S. Haliyo, and S. Régnier, “A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly,” Nanotechnology 20(21), 215301 (2009).
[CrossRef] [PubMed]

Nature

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. Lett.

G. Vieira, T. Henighan, A. Chen, A. J. Hauser, F. Y. Yang, J. J. Chalmers, and R. Sooryakumar, “Magnetic wire traps and programmable manipulation of biological cells,” Phys. Rev. Lett. 103(12), 128101 (2009).
[CrossRef] [PubMed]

Sensors

B. R. Rae, K. R. Muir, Z. Gong, J. McKendry, J. M. Girkin, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System,” Sensors 9(11), 9255–9274 (2009).
[CrossRef]

Other

R. A. Street, Technology and Applications of Amorphous Silicon (Springer, New York, 2000).

Supplementary Material (3)

» Media 1: AVI (2807 KB)     
» Media 2: AVI (3783 KB)     
» Media 3: AVI (3950 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) Schematics of a) the dielectrophoresis (DEP) forces generated in OET devices and the resultant particle movement and b) Light-induced AC electro-osmosis (LACE).and induced liquid movement.

Fig. 2
Fig. 2

(Color online) a) Oblique view photograph of the integrated miniaturised OET device under the microscope, and b) the corresponding cross-sectional schematic diagram.

Fig. 3
Fig. 3

(Color online) Representative frames of supplementary Media 1 and Media 2; photographs Ia and IIa were taken with the LEDs turned-off; photographs Ib and IIb were captured 40 seconds after a pixel had been turned on; Ib) Trapping beads with 74µm diameter pixel, at 20V peak to peak voltage (Media 1) IIb) Trapping cells with 54µm pixel at 5V peak to peak voltage (Media 2).

Fig. 4
Fig. 4

(Color online) Representative frames of supplementary Media 3 showing trapping of cells with 64µm, 54µm and 44µm diameter pixels at 5V peak to peak voltage; photograph a) was taken before any micro-LED has been turned-on; photograph b) was captured after 5 pixels had been turned on.

Fig. 5
Fig. 5

(Color online) a) A plot of average cell velocity as a function of imaged pixel diameter for one of the AC voltages (13V) applied between the ITO electrodes; b) A plot of average cell trapping as a function of AC voltage for 4 different pixel sizes. Error bars represent +2σ, −2σ.

Fig. 6
Fig. 6

(Color online) Results of the simulations with schematic of illuminated area (the two-headed arrow dashed lines indicate the pixel imaged spot diameter and position in each case): a) the liquid above the a-Si:H is simulated and the potential dropped across it is shown (100µm is the real distance between the two electrodes), b) the conductivity of the a-Si:H as a function of position is shown, similar to the intensity profile; c) the electric field distribution is in the x direction, d) the gradient of the electric field squared in the liquid just above the a-Si:H.

Fig. 7
Fig. 7

(Color online) a) The forces due to DEP (red), LACE (blue) and the total force (black) for the 84µm pixel are plotted against position (1-D) on the electrode, the insert shows higher resolution near the origin, where the y axis is in Newtons and the x axis in meters, b) the total force profiles for four pixels are shown - 84µm (black), 74µm (red), 64µm (green) and 54µm (blue).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F = 2 π r 3 ε m Re [ k ( ω ) ] E 2
ν s l i p = ε m ζ E η
F = 6 π η R ν s l i p

Metrics