Abstract

We report on the imaging of biological cells including living neurons by a dedicated fibered interferometric scanning optical microscope. The topography and surface roughness of mouse fibroblasts and hippocampal neurons are clearly revealed. This straightforward far-field technique allows fast, high resolution observation of samples in liquids without lengthy alignment procedures or costly components.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
    [Crossref] [PubMed]
  2. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
    [Crossref]
  3. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
    [Crossref]
  4. A. Drezet, A. Hohenau, J. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron 38, 427–437 (2007).
    [Crossref]
  5. D. Fotiadis, S. Scheuring, S. A. Müller, A. Engel, and D. J. Müller, “Imaging and manipulation of biological structures with the AFM,” Micron 33, 385–397 (2002).
    [Crossref] [PubMed]
  6. G. Popescu, Y. Park, R. Ramachandra, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrabe motions,” Phys. Rev. E 76, 031902 (2007).
    [Crossref]
  7. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005–7013 (2006).
    [Crossref] [PubMed]
  8. B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33, 744–746 (2008).
    [Crossref] [PubMed]
  9. J. Chevrier, S. Huant, W. Schwartz, and A. Siria, French Patent 08/59091, Université Joseph Fourier - CNRS - CEA (2008), http://www.wipo.int/pctdb/en/wo.jsp?WO=2010076540 .
  10. R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
    [Crossref]
  11. P. Hoffmann, B. Dutoit, and R.-P. Salathé, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61, 165–170 (1995).
    [Crossref]
  12. N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instr. 77, 063704 (2006).
    [Crossref]
  13. K. Karrai, G. Kolb, G. Abstreiter, and A. Schmeller, “Optical near-field induced current microscopy,” Ultramicroscopy 61, 299–304 (1995).
    [Crossref]
  14. A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: Application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
    [Crossref]
  15. A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
    [Crossref]
  16. A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip,” Opt. Commun. 284, 1444–1450 (2011).
    [Crossref]
  17. O. Brzobohatý, T. Civzmár, and P. Zemánek, “High quality quasi-bessel beam generated by round-tip axicon,” Opt. Express 16, 12688–12700 (2008).
    [PubMed]
  18. W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
    [Crossref]
  19. H. Guillou, A. Depraz-Depland, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albigès-Rizo, and M. Block, “Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream rac1 signaling,” Exp. Cell Res. 314, 478–488 (2008).
    [Crossref]
  20. B. Vianay, J. Käfer, E. Planus, M. Block, F. Graner, and H. Guillou, “Single cell spreading on a protein lattice adopt an energy minimizing shape,” Phys. Rev. Lett. 105, 128101 (2010).
    [Crossref] [PubMed]
  21. D. Leahy, I. Aukhil, and H. Erickson, “2.0 å crystal structure of a four-domain segment of human fibronectin encompassing the rgd loop and synergy region,” Cell 84, 155–164 (1996).
    [Crossref] [PubMed]
  22. C. Dotti, C. Sullivan, and G. Banker, “The establishment of polarity by hippocampal neurons in culture,” J. Neurosci. 8, 1454–1468 (1988).
    [PubMed]
  23. Y. Nam, D. W. Branch, and B. C. Wheeler, “Epoxy-silane linking of biomolecules is simple and effective for patterning neuronal cultures,” Biosens. Bioelectron. 22, 589–597 (2006).
    [Crossref] [PubMed]
  24. D. F. Bray, J. Bagu, and P. Koegler, “Comparison of hexamethyldisilazane (hmds), peldri ii, and critical-point drying methods for scanning electron microscopy of biological specimens,” Microsc. Res. Tech. 26, 489–495 (1993).
    [Crossref] [PubMed]
  25. L. Abad, M. Petit, G. Bugnicourt, T. Crozes, T. Fournier, and C. Villard, “Neurofets : Field effect nano-transistors fabrication for neural recording,” In: A Stett (ed). Proceedings MEA Meeting 2010. Stuttgart: BIOPRO Baden-Württemberg GmbH2010; 342–343 (2010).
  26. G. Kim, “A mechanical spike accompanies the action potential in mammalian nerve terminals,” Biophys. J. 92, 3122–3129 (2007).
    [Crossref] [PubMed]

2011 (1)

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip,” Opt. Commun. 284, 1444–1450 (2011).
[Crossref]

2010 (1)

B. Vianay, J. Käfer, E. Planus, M. Block, F. Graner, and H. Guillou, “Single cell spreading on a protein lattice adopt an energy minimizing shape,” Phys. Rev. Lett. 105, 128101 (2010).
[Crossref] [PubMed]

2008 (3)

2007 (3)

G. Kim, “A mechanical spike accompanies the action potential in mammalian nerve terminals,” Biophys. J. 92, 3122–3129 (2007).
[Crossref] [PubMed]

A. Drezet, A. Hohenau, J. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron 38, 427–437 (2007).
[Crossref]

G. Popescu, Y. Park, R. Ramachandra, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrabe motions,” Phys. Rev. E 76, 031902 (2007).
[Crossref]

2006 (3)

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instr. 77, 063704 (2006).
[Crossref]

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005–7013 (2006).
[Crossref] [PubMed]

Y. Nam, D. W. Branch, and B. C. Wheeler, “Epoxy-silane linking of biomolecules is simple and effective for patterning neuronal cultures,” Biosens. Bioelectron. 22, 589–597 (2006).
[Crossref] [PubMed]

2005 (1)

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[Crossref]

2004 (1)

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[Crossref]

2002 (2)

A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: Application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
[Crossref]

D. Fotiadis, S. Scheuring, S. A. Müller, A. Engel, and D. J. Müller, “Imaging and manipulation of biological structures with the AFM,” Micron 33, 385–397 (2002).
[Crossref] [PubMed]

1999 (1)

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[Crossref]

1996 (1)

D. Leahy, I. Aukhil, and H. Erickson, “2.0 å crystal structure of a four-domain segment of human fibronectin encompassing the rgd loop and synergy region,” Cell 84, 155–164 (1996).
[Crossref] [PubMed]

1995 (2)

P. Hoffmann, B. Dutoit, and R.-P. Salathé, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61, 165–170 (1995).
[Crossref]

K. Karrai, G. Kolb, G. Abstreiter, and A. Schmeller, “Optical near-field induced current microscopy,” Ultramicroscopy 61, 299–304 (1995).
[Crossref]

1993 (1)

D. F. Bray, J. Bagu, and P. Koegler, “Comparison of hexamethyldisilazane (hmds), peldri ii, and critical-point drying methods for scanning electron microscopy of biological specimens,” Microsc. Res. Tech. 26, 489–495 (1993).
[Crossref] [PubMed]

1988 (1)

C. Dotti, C. Sullivan, and G. Banker, “The establishment of polarity by hippocampal neurons in culture,” J. Neurosci. 8, 1454–1468 (1988).
[PubMed]

1986 (1)

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

1984 (1)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

1982 (1)

G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[Crossref]

Abad, L.

L. Abad, M. Petit, G. Bugnicourt, T. Crozes, T. Fournier, and C. Villard, “Neurofets : Field effect nano-transistors fabrication for neural recording,” In: A Stett (ed). Proceedings MEA Meeting 2010. Stuttgart: BIOPRO Baden-Württemberg GmbH2010; 342–343 (2010).

Abstreiter, G.

K. Karrai, G. Kolb, G. Abstreiter, and A. Schmeller, “Optical near-field induced current microscopy,” Ultramicroscopy 61, 299–304 (1995).
[Crossref]

Ahluwalia, B. P. S.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[Crossref]

Albigès-Rizo, C.

H. Guillou, A. Depraz-Depland, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albigès-Rizo, and M. Block, “Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream rac1 signaling,” Exp. Cell Res. 314, 478–488 (2008).
[Crossref]

Aukhil, I.

D. Leahy, I. Aukhil, and H. Erickson, “2.0 å crystal structure of a four-domain segment of human fibronectin encompassing the rgd loop and synergy region,” Cell 84, 155–164 (1996).
[Crossref] [PubMed]

Badizadegan, K.

G. Popescu, Y. Park, R. Ramachandra, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrabe motions,” Phys. Rev. E 76, 031902 (2007).
[Crossref]

Bagu, J.

D. F. Bray, J. Bagu, and P. Koegler, “Comparison of hexamethyldisilazane (hmds), peldri ii, and critical-point drying methods for scanning electron microscopy of biological specimens,” Microsc. Res. Tech. 26, 489–495 (1993).
[Crossref] [PubMed]

Banker, G.

C. Dotti, C. Sullivan, and G. Banker, “The establishment of polarity by hippocampal neurons in culture,” J. Neurosci. 8, 1454–1468 (1988).
[PubMed]

Binnig, G.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[Crossref]

Block, M.

B. Vianay, J. Käfer, E. Planus, M. Block, F. Graner, and H. Guillou, “Single cell spreading on a protein lattice adopt an energy minimizing shape,” Phys. Rev. Lett. 105, 128101 (2010).
[Crossref] [PubMed]

H. Guillou, A. Depraz-Depland, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albigès-Rizo, and M. Block, “Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream rac1 signaling,” Exp. Cell Res. 314, 478–488 (2008).
[Crossref]

Branch, D. W.

Y. Nam, D. W. Branch, and B. C. Wheeler, “Epoxy-silane linking of biomolecules is simple and effective for patterning neuronal cultures,” Biosens. Bioelectron. 22, 589–597 (2006).
[Crossref] [PubMed]

Bray, D. F.

D. F. Bray, J. Bagu, and P. Koegler, “Comparison of hexamethyldisilazane (hmds), peldri ii, and critical-point drying methods for scanning electron microscopy of biological specimens,” Microsc. Res. Tech. 26, 489–495 (1993).
[Crossref] [PubMed]

Brun, M.

A. Drezet, A. Hohenau, J. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron 38, 427–437 (2007).
[Crossref]

Brzobohatý, O.

Bugnicourt, G.

L. Abad, M. Petit, G. Bugnicourt, T. Crozes, T. Fournier, and C. Villard, “Neurofets : Field effect nano-transistors fabrication for neural recording,” In: A Stett (ed). Proceedings MEA Meeting 2010. Stuttgart: BIOPRO Baden-Württemberg GmbH2010; 342–343 (2010).

Charrière, F.

Chaussy, J.

H. Guillou, A. Depraz-Depland, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albigès-Rizo, and M. Block, “Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream rac1 signaling,” Exp. Cell Res. 314, 478–488 (2008).
[Crossref]

Cheong, W. C.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[Crossref]

Chevalier, N.

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instr. 77, 063704 (2006).
[Crossref]

Civzmár, T.

Colomb, T.

Crozes, T.

L. Abad, M. Petit, G. Bugnicourt, T. Crozes, T. Fournier, and C. Villard, “Neurofets : Field effect nano-transistors fabrication for neural recording,” In: A Stett (ed). Proceedings MEA Meeting 2010. Stuttgart: BIOPRO Baden-Württemberg GmbH2010; 342–343 (2010).

Cuche, A.

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip,” Opt. Commun. 284, 1444–1450 (2011).
[Crossref]

Deckert, V.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[Crossref]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

Depeursinge, C.

Depraz-Depland, A.

H. Guillou, A. Depraz-Depland, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albigès-Rizo, and M. Block, “Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream rac1 signaling,” Exp. Cell Res. 314, 478–488 (2008).
[Crossref]

Dotti, C.

C. Dotti, C. Sullivan, and G. Banker, “The establishment of polarity by hippocampal neurons in culture,” J. Neurosci. 8, 1454–1468 (1988).
[PubMed]

Drezet, A.

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip,” Opt. Commun. 284, 1444–1450 (2011).
[Crossref]

A. Drezet, A. Hohenau, J. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron 38, 427–437 (2007).
[Crossref]

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[Crossref]

A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: Application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
[Crossref]

Dutoit, B.

P. Hoffmann, B. Dutoit, and R.-P. Salathé, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61, 165–170 (1995).
[Crossref]

Engel, A.

D. Fotiadis, S. Scheuring, S. A. Müller, A. Engel, and D. J. Müller, “Imaging and manipulation of biological structures with the AFM,” Micron 33, 385–397 (2002).
[Crossref] [PubMed]

Erickson, H.

D. Leahy, I. Aukhil, and H. Erickson, “2.0 å crystal structure of a four-domain segment of human fibronectin encompassing the rgd loop and synergy region,” Cell 84, 155–164 (1996).
[Crossref] [PubMed]

Feld, M. S.

G. Popescu, Y. Park, R. Ramachandra, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrabe motions,” Phys. Rev. E 76, 031902 (2007).
[Crossref]

Fokas, C.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[Crossref]

Fotiadis, D.

D. Fotiadis, S. Scheuring, S. A. Müller, A. Engel, and D. J. Müller, “Imaging and manipulation of biological structures with the AFM,” Micron 33, 385–397 (2002).
[Crossref] [PubMed]

Fournier, T.

L. Abad, M. Petit, G. Bugnicourt, T. Crozes, T. Fournier, and C. Villard, “Neurofets : Field effect nano-transistors fabrication for neural recording,” In: A Stett (ed). Proceedings MEA Meeting 2010. Stuttgart: BIOPRO Baden-Württemberg GmbH2010; 342–343 (2010).

Gerber, C.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[Crossref]

Graner, F.

B. Vianay, J. Käfer, E. Planus, M. Block, F. Graner, and H. Guillou, “Single cell spreading on a protein lattice adopt an energy minimizing shape,” Phys. Rev. Lett. 105, 128101 (2010).
[Crossref] [PubMed]

Grichine, A.

H. Guillou, A. Depraz-Depland, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albigès-Rizo, and M. Block, “Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream rac1 signaling,” Exp. Cell Res. 314, 478–488 (2008).
[Crossref]

Guillou, H.

B. Vianay, J. Käfer, E. Planus, M. Block, F. Graner, and H. Guillou, “Single cell spreading on a protein lattice adopt an energy minimizing shape,” Phys. Rev. Lett. 105, 128101 (2010).
[Crossref] [PubMed]

H. Guillou, A. Depraz-Depland, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albigès-Rizo, and M. Block, “Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream rac1 signaling,” Exp. Cell Res. 314, 478–488 (2008).
[Crossref]

Hecht, B.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[Crossref]

Heger, T. J.

Hoffmann, P.

P. Hoffmann, B. Dutoit, and R.-P. Salathé, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61, 165–170 (1995).
[Crossref]

Hohenau, A.

A. Drezet, A. Hohenau, J. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron 38, 427–437 (2007).
[Crossref]

Huant, S.

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip,” Opt. Commun. 284, 1444–1450 (2011).
[Crossref]

A. Drezet, A. Hohenau, J. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron 38, 427–437 (2007).
[Crossref]

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instr. 77, 063704 (2006).
[Crossref]

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[Crossref]

A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: Application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
[Crossref]

Käfer, J.

B. Vianay, J. Käfer, E. Planus, M. Block, F. Graner, and H. Guillou, “Single cell spreading on a protein lattice adopt an energy minimizing shape,” Phys. Rev. Lett. 105, 128101 (2010).
[Crossref] [PubMed]

Karrai, K.

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instr. 77, 063704 (2006).
[Crossref]

K. Karrai, G. Kolb, G. Abstreiter, and A. Schmeller, “Optical near-field induced current microscopy,” Ultramicroscopy 61, 299–304 (1995).
[Crossref]

Kim, G.

G. Kim, “A mechanical spike accompanies the action potential in mammalian nerve terminals,” Biophys. J. 92, 3122–3129 (2007).
[Crossref] [PubMed]

Koegler, P.

D. F. Bray, J. Bagu, and P. Koegler, “Comparison of hexamethyldisilazane (hmds), peldri ii, and critical-point drying methods for scanning electron microscopy of biological specimens,” Microsc. Res. Tech. 26, 489–495 (1993).
[Crossref] [PubMed]

Kolb, G.

K. Karrai, G. Kolb, G. Abstreiter, and A. Schmeller, “Optical near-field induced current microscopy,” Ultramicroscopy 61, 299–304 (1995).
[Crossref]

Krenn, J.

A. Drezet, A. Hohenau, J. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron 38, 427–437 (2007).
[Crossref]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

Leahy, D.

D. Leahy, I. Aukhil, and H. Erickson, “2.0 å crystal structure of a four-domain segment of human fibronectin encompassing the rgd loop and synergy region,” Cell 84, 155–164 (1996).
[Crossref] [PubMed]

Magistretti, P. J.

Marquet, P.

Mitchell, E. A. D.

Motte, J. F.

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instr. 77, 063704 (2006).
[Crossref]

Müller, D. J.

D. Fotiadis, S. Scheuring, S. A. Müller, A. Engel, and D. J. Müller, “Imaging and manipulation of biological structures with the AFM,” Micron 33, 385–397 (2002).
[Crossref] [PubMed]

Müller, S. A.

D. Fotiadis, S. Scheuring, S. A. Müller, A. Engel, and D. J. Müller, “Imaging and manipulation of biological structures with the AFM,” Micron 33, 385–397 (2002).
[Crossref] [PubMed]

Nam, Y.

Y. Nam, D. W. Branch, and B. C. Wheeler, “Epoxy-silane linking of biomolecules is simple and effective for patterning neuronal cultures,” Biosens. Bioelectron. 22, 589–597 (2006).
[Crossref] [PubMed]

Nasse, M. J.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[Crossref]

Niu, H. B.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[Crossref]

Park, Y.

G. Popescu, Y. Park, R. Ramachandra, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrabe motions,” Phys. Rev. E 76, 031902 (2007).
[Crossref]

Pavillon, N.

Peng, X.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[Crossref]

Petit, M.

L. Abad, M. Petit, G. Bugnicourt, T. Crozes, T. Fournier, and C. Villard, “Neurofets : Field effect nano-transistors fabrication for neural recording,” In: A Stett (ed). Proceedings MEA Meeting 2010. Stuttgart: BIOPRO Baden-Württemberg GmbH2010; 342–343 (2010).

Planus, E.

B. Vianay, J. Käfer, E. Planus, M. Block, F. Graner, and H. Guillou, “Single cell spreading on a protein lattice adopt an energy minimizing shape,” Phys. Rev. Lett. 105, 128101 (2010).
[Crossref] [PubMed]

H. Guillou, A. Depraz-Depland, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albigès-Rizo, and M. Block, “Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream rac1 signaling,” Exp. Cell Res. 314, 478–488 (2008).
[Crossref]

Pohl, D. W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

Popescu, G.

G. Popescu, Y. Park, R. Ramachandra, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrabe motions,” Phys. Rev. E 76, 031902 (2007).
[Crossref]

Quate, C. F.

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

Ramachandra, R.

G. Popescu, Y. Park, R. Ramachandra, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrabe motions,” Phys. Rev. E 76, 031902 (2007).
[Crossref]

Rappaz, B.

Rohrer, H.

G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[Crossref]

Salathé, R.-P.

P. Hoffmann, B. Dutoit, and R.-P. Salathé, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61, 165–170 (1995).
[Crossref]

Scheuring, S.

D. Fotiadis, S. Scheuring, S. A. Müller, A. Engel, and D. J. Müller, “Imaging and manipulation of biological structures with the AFM,” Micron 33, 385–397 (2002).
[Crossref] [PubMed]

Schmeller, A.

K. Karrai, G. Kolb, G. Abstreiter, and A. Schmeller, “Optical near-field induced current microscopy,” Ultramicroscopy 61, 299–304 (1995).
[Crossref]

Sick, B.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[Crossref]

Sonnefraud, Y.

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instr. 77, 063704 (2006).
[Crossref]

Stöckle, R.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[Crossref]

Sullivan, C.

C. Dotti, C. Sullivan, and G. Banker, “The establishment of polarity by hippocampal neurons in culture,” J. Neurosci. 8, 1454–1468 (1988).
[PubMed]

Vianay, B.

B. Vianay, J. Käfer, E. Planus, M. Block, F. Graner, and H. Guillou, “Single cell spreading on a protein lattice adopt an energy minimizing shape,” Phys. Rev. Lett. 105, 128101 (2010).
[Crossref] [PubMed]

H. Guillou, A. Depraz-Depland, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albigès-Rizo, and M. Block, “Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream rac1 signaling,” Exp. Cell Res. 314, 478–488 (2008).
[Crossref]

Villard, C.

L. Abad, M. Petit, G. Bugnicourt, T. Crozes, T. Fournier, and C. Villard, “Neurofets : Field effect nano-transistors fabrication for neural recording,” In: A Stett (ed). Proceedings MEA Meeting 2010. Stuttgart: BIOPRO Baden-Württemberg GmbH2010; 342–343 (2010).

Wang, H.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[Crossref]

Weibel, E.

G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[Crossref]

Wheeler, B. C.

Y. Nam, D. W. Branch, and B. C. Wheeler, “Epoxy-silane linking of biomolecules is simple and effective for patterning neuronal cultures,” Biosens. Bioelectron. 22, 589–597 (2006).
[Crossref] [PubMed]

Wild, U. P.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[Crossref]

Woehl, J. C.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[Crossref]

A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: Application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
[Crossref]

Yuan, X.-C.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[Crossref]

Zemánek, P.

Zenobi, R.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[Crossref]

Zhang, L.-S.

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[Crossref]

Appl. Phys. Lett. (3)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution lambda/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[Crossref]

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160–162 (1999).
[Crossref]

W. C. Cheong, B. P. S. Ahluwalia, X.-C. Yuan, L.-S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of bessel beams for optical manipulation,” Appl. Phys. Lett. 87, 024104 (2005).
[Crossref]

Biophys. J. (1)

G. Kim, “A mechanical spike accompanies the action potential in mammalian nerve terminals,” Biophys. J. 92, 3122–3129 (2007).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

Y. Nam, D. W. Branch, and B. C. Wheeler, “Epoxy-silane linking of biomolecules is simple and effective for patterning neuronal cultures,” Biosens. Bioelectron. 22, 589–597 (2006).
[Crossref] [PubMed]

Cell (1)

D. Leahy, I. Aukhil, and H. Erickson, “2.0 å crystal structure of a four-domain segment of human fibronectin encompassing the rgd loop and synergy region,” Cell 84, 155–164 (1996).
[Crossref] [PubMed]

Europhys. Lett. (1)

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[Crossref]

Exp. Cell Res. (1)

H. Guillou, A. Depraz-Depland, E. Planus, B. Vianay, J. Chaussy, A. Grichine, C. Albigès-Rizo, and M. Block, “Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream rac1 signaling,” Exp. Cell Res. 314, 478–488 (2008).
[Crossref]

J. Neurosci. (1)

C. Dotti, C. Sullivan, and G. Banker, “The establishment of polarity by hippocampal neurons in culture,” J. Neurosci. 8, 1454–1468 (1988).
[PubMed]

Micron (2)

A. Drezet, A. Hohenau, J. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron 38, 427–437 (2007).
[Crossref]

D. Fotiadis, S. Scheuring, S. A. Müller, A. Engel, and D. J. Müller, “Imaging and manipulation of biological structures with the AFM,” Micron 33, 385–397 (2002).
[Crossref] [PubMed]

Microsc. Res. Tech. (1)

D. F. Bray, J. Bagu, and P. Koegler, “Comparison of hexamethyldisilazane (hmds), peldri ii, and critical-point drying methods for scanning electron microscopy of biological specimens,” Microsc. Res. Tech. 26, 489–495 (1993).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: Resolution versus the aperture tip,” Opt. Commun. 284, 1444–1450 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. E (2)

A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: Application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
[Crossref]

G. Popescu, Y. Park, R. Ramachandra, K. Badizadegan, and M. S. Feld, “Coherence properties of red blood cell membrabe motions,” Phys. Rev. E 76, 031902 (2007).
[Crossref]

Phys. Rev. Lett. (3)

G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[Crossref] [PubMed]

G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett. 49, 57–61 (1982).
[Crossref]

B. Vianay, J. Käfer, E. Planus, M. Block, F. Graner, and H. Guillou, “Single cell spreading on a protein lattice adopt an energy minimizing shape,” Phys. Rev. Lett. 105, 128101 (2010).
[Crossref] [PubMed]

Rev. Sci. Instr. (1)

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instr. 77, 063704 (2006).
[Crossref]

Ultramicroscopy (2)

K. Karrai, G. Kolb, G. Abstreiter, and A. Schmeller, “Optical near-field induced current microscopy,” Ultramicroscopy 61, 299–304 (1995).
[Crossref]

P. Hoffmann, B. Dutoit, and R.-P. Salathé, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61, 165–170 (1995).
[Crossref]

Other (2)

J. Chevrier, S. Huant, W. Schwartz, and A. Siria, French Patent 08/59091, Université Joseph Fourier - CNRS - CEA (2008), http://www.wipo.int/pctdb/en/wo.jsp?WO=2010076540 .

L. Abad, M. Petit, G. Bugnicourt, T. Crozes, T. Fournier, and C. Villard, “Neurofets : Field effect nano-transistors fabrication for neural recording,” In: A Stett (ed). Proceedings MEA Meeting 2010. Stuttgart: BIOPRO Baden-Württemberg GmbH2010; 342–343 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic view of the iSOM set-up

Fig. 2
Fig. 2

(a) Scheme of the iSOM working principle. (b) z-scan curves on a bare glass substrate for two wavelengths. The inset shows the FFT.

Fig. 3
Fig. 3

z-scan curves above and beside a neuronal sona in water (λ = 830 nm). The inset shows the FFT.

Fig. 4
Fig. 4

Fixed fibroblast cells observed by (a) phase-contrast microscopy, (b,d) iSOM, and (c) AFM. (c) and (b) show the lower left cell visible in (a) and (b). The span of the color bar in (c) corresponds to 760 nm. The distribution of the greyscale corresponds to a linear distribution modified by a gamma value of 0.65 to enhance the contrast.

Fig. 5
Fig. 5

Calculation of the cell topography from iSOM measurements made at two wavelengths. The white lines indicate the chosen cross section.

Fig. 6
Fig. 6

Fixed neurons on an electronic substrate observed by (a) SEM and (b) iSOM.

Fig. 7
Fig. 7

Living neurons observed by (a) phase contrast microscopy and (b–c) iSOM.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I r ( z ) = I i r + I o r + 2 I i r I o r cos ( ϕ ) = [ R i r + R o r + 2 R i r R o r cos ( ϕ ) ] I 0

Metrics