Abstract

A 1 x 8 fiber array is used as the front-end of a receiver system. Each channel has a different length of fiber, resulting in each channel signal arriving at the detector at a pre-determined interval relative to a constant repetitive frequency signal. We demonstrate that these eight channels can be efficiently coupled to an individual single-photon detector such that the arrival-time of a photon in each is distinguishable from the next. Thus, we demonstrate spatial position to time information exchange, resulting in a photon-counting array using a single detector. The receiver system could be implemented in numerous applications, including time-resolved photoluminescence, low-light level spectroscopy and quantum information processing.

© 2011 OSA

Full Article  |  PDF Article
Related Articles
Quantum key distribution system clocked at 2 GHz

Karen J. Gordon, Veronica Fernandez, Gerald S. Buller, Ivan Rech, Sergio D. Cova, and Paul D. Townsend
Opt. Express 13(8) 3015-3020 (2005)

Coupling and cross-talk effects in 12-15 μm diameter single-mode fiber arrays for simultaneous transmission and photon collection from scattering media

Yuan Luo, Jose Castillo, Lina Arauz, Jennifer Barton, and Raymond K. Kostuk
Appl. Opt. 46(2) 253-261 (2007)

Variable-Load Quenching Circuit for single-photon avalanche diodes

Simone Tisa, Fabrizio Guerrieri, and Franco Zappa
Opt. Express 16(3) 2232-2244 (2008)

References

  • View by:
  • |
  • |
  • |

  1. L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A Characterization of the Single-photon Sensitivity of an Electron Multiplying Charge-Coupled Device,” J. Phys. B 42(11), 114011 (2009).
    [Crossref]
  2. F. Zappa, S. Tisa, S. Cova, P. Maccagnani, D. B. Calia, R. Saletti, R. Roncella, G. Bonanno, and M. Belluso, “Single-Photon Avalanche Diode Arrays for Fast Transients and Adaptive Optics,” IEEE Trans. Instrum. Meas. 55(1), 365–374 (2006).
    [Crossref]
  3. A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, “Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum,” Phys. Rev. Lett. 94(12), 123601 (2005).
    [Crossref] [PubMed]
  4. H. Dautet, P. Deschamps, B. Dion, A. D. Macgregor, D. Macsween, R. J. McIntyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32(21), 3894–3900 (1993).
    [PubMed]
  5. S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
    [Crossref]
  6. G. S. Buller and R. J. Collins, “Single–photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
    [Crossref]
  7. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379 (1948).
  8. Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
    [Crossref] [PubMed]
  9. J. J. Field, R. Carriles, and J. Squier, “Photon-Counting Photobleaching Measurements and the Effect of Dispersion in Two-Photon Microscopy,” Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, Optical Society of America, JTuD58, (2009)
  10. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
    [Crossref] [PubMed]
  11. M. N. O’Sullivan-Hale, I. A. Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d=3 and d=6 qudits,” Phys. Rev. Lett. 94(22), 220501 (2005).
    [Crossref] [PubMed]

2010 (1)

G. S. Buller and R. J. Collins, “Single–photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

2009 (2)

L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A Characterization of the Single-photon Sensitivity of an Electron Multiplying Charge-Coupled Device,” J. Phys. B 42(11), 114011 (2009).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref] [PubMed]

2006 (1)

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, D. B. Calia, R. Saletti, R. Roncella, G. Bonanno, and M. Belluso, “Single-Photon Avalanche Diode Arrays for Fast Transients and Adaptive Optics,” IEEE Trans. Instrum. Meas. 55(1), 365–374 (2006).
[Crossref]

2005 (2)

A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, “Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum,” Phys. Rev. Lett. 94(12), 123601 (2005).
[Crossref] [PubMed]

M. N. O’Sullivan-Hale, I. A. Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d=3 and d=6 qudits,” Phys. Rev. Lett. 94(22), 220501 (2005).
[Crossref] [PubMed]

2002 (1)

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
[Crossref] [PubMed]

1993 (1)

1981 (1)

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

1948 (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379 (1948).

Altman, A. R.

A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, “Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum,” Phys. Rev. Lett. 94(12), 123601 (2005).
[Crossref] [PubMed]

Andreoni, A.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

Barbosa, G. A.

A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, “Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum,” Phys. Rev. Lett. 94(12), 123601 (2005).
[Crossref] [PubMed]

Belluso, M.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, D. B. Calia, R. Saletti, R. Roncella, G. Bonanno, and M. Belluso, “Single-Photon Avalanche Diode Arrays for Fast Transients and Adaptive Optics,” IEEE Trans. Instrum. Meas. 55(1), 365–374 (2006).
[Crossref]

Bonanno, G.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, D. B. Calia, R. Saletti, R. Roncella, G. Bonanno, and M. Belluso, “Single-Photon Avalanche Diode Arrays for Fast Transients and Adaptive Optics,” IEEE Trans. Instrum. Meas. 55(1), 365–374 (2006).
[Crossref]

Boyd, R. W.

M. N. O’Sullivan-Hale, I. A. Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d=3 and d=6 qudits,” Phys. Rev. Lett. 94(22), 220501 (2005).
[Crossref] [PubMed]

Buller, G. S.

Calia, D. B.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, D. B. Calia, R. Saletti, R. Roncella, G. Bonanno, and M. Belluso, “Single-Photon Avalanche Diode Arrays for Fast Transients and Adaptive Optics,” IEEE Trans. Instrum. Meas. 55(1), 365–374 (2006).
[Crossref]

Collins, R. J.

Corndorf, E.

A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, “Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum,” Phys. Rev. Lett. 94(12), 123601 (2005).
[Crossref] [PubMed]

Cova, S.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, D. B. Calia, R. Saletti, R. Roncella, G. Bonanno, and M. Belluso, “Single-Photon Avalanche Diode Arrays for Fast Transients and Adaptive Optics,” IEEE Trans. Instrum. Meas. 55(1), 365–374 (2006).
[Crossref]

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

Dautet, H.

Deschamps, P.

Dion, B.

Fernández, V.

Haraguchi, T.

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
[Crossref] [PubMed]

Hiraoka, Y.

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
[Crossref] [PubMed]

Howell, J. C.

M. N. O’Sullivan-Hale, I. A. Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d=3 and d=6 qudits,” Phys. Rev. Lett. 94(22), 220501 (2005).
[Crossref] [PubMed]

Khan, I. A.

M. N. O’Sullivan-Hale, I. A. Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d=3 and d=6 qudits,” Phys. Rev. Lett. 94(22), 220501 (2005).
[Crossref] [PubMed]

Köprülü, K. G.

A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, “Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum,” Phys. Rev. Lett. 94(12), 123601 (2005).
[Crossref] [PubMed]

Krichel, N. J.

Kumar, P.

A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, “Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum,” Phys. Rev. Lett. 94(12), 123601 (2005).
[Crossref] [PubMed]

Longoni, A.

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

Lundeen, J. S.

L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A Characterization of the Single-photon Sensitivity of an Electron Multiplying Charge-Coupled Device,” J. Phys. B 42(11), 114011 (2009).
[Crossref]

Maccagnani, P.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, D. B. Calia, R. Saletti, R. Roncella, G. Bonanno, and M. Belluso, “Single-Photon Avalanche Diode Arrays for Fast Transients and Adaptive Optics,” IEEE Trans. Instrum. Meas. 55(1), 365–374 (2006).
[Crossref]

Macgregor, A. D.

Macsween, D.

McCarthy, A.

McIntyre, R. J.

Neves, L.

L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A Characterization of the Single-photon Sensitivity of an Electron Multiplying Charge-Coupled Device,” J. Phys. B 42(11), 114011 (2009).
[Crossref]

O’Sullivan-Hale, M. N.

M. N. O’Sullivan-Hale, I. A. Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d=3 and d=6 qudits,” Phys. Rev. Lett. 94(22), 220501 (2005).
[Crossref] [PubMed]

Roncella, R.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, D. B. Calia, R. Saletti, R. Roncella, G. Bonanno, and M. Belluso, “Single-Photon Avalanche Diode Arrays for Fast Transients and Adaptive Optics,” IEEE Trans. Instrum. Meas. 55(1), 365–374 (2006).
[Crossref]

Saletti, R.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, D. B. Calia, R. Saletti, R. Roncella, G. Bonanno, and M. Belluso, “Single-Photon Avalanche Diode Arrays for Fast Transients and Adaptive Optics,” IEEE Trans. Instrum. Meas. 55(1), 365–374 (2006).
[Crossref]

Shannon, C. E.

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379 (1948).

Shimi, T.

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
[Crossref] [PubMed]

Tisa, S.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, D. B. Calia, R. Saletti, R. Roncella, G. Bonanno, and M. Belluso, “Single-Photon Avalanche Diode Arrays for Fast Transients and Adaptive Optics,” IEEE Trans. Instrum. Meas. 55(1), 365–374 (2006).
[Crossref]

Trottier, C.

Wallace, A. M.

Walmsley, I. A.

L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A Characterization of the Single-photon Sensitivity of an Electron Multiplying Charge-Coupled Device,” J. Phys. B 42(11), 114011 (2009).
[Crossref]

Webb, P. P.

Zappa, F.

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, D. B. Calia, R. Saletti, R. Roncella, G. Bonanno, and M. Belluso, “Single-Photon Avalanche Diode Arrays for Fast Transients and Adaptive Optics,” IEEE Trans. Instrum. Meas. 55(1), 365–374 (2006).
[Crossref]

Zhang, L.

L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A Characterization of the Single-photon Sensitivity of an Electron Multiplying Charge-Coupled Device,” J. Phys. B 42(11), 114011 (2009).
[Crossref]

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379 (1948).

Cell Struct. Funct. (1)

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
[Crossref] [PubMed]

IEEE Trans. Instrum. Meas. (1)

F. Zappa, S. Tisa, S. Cova, P. Maccagnani, D. B. Calia, R. Saletti, R. Roncella, G. Bonanno, and M. Belluso, “Single-Photon Avalanche Diode Arrays for Fast Transients and Adaptive Optics,” IEEE Trans. Instrum. Meas. 55(1), 365–374 (2006).
[Crossref]

J. Phys. B (1)

L. Zhang, L. Neves, J. S. Lundeen, and I. A. Walmsley, “A Characterization of the Single-photon Sensitivity of an Electron Multiplying Charge-Coupled Device,” J. Phys. B 42(11), 114011 (2009).
[Crossref]

Meas. Sci. Technol. (1)

G. S. Buller and R. J. Collins, “Single–photon generation and detection,” Meas. Sci. Technol. 21(1), 012002 (2010).
[Crossref]

Phys. Rev. Lett. (2)

A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, “Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum,” Phys. Rev. Lett. 94(12), 123601 (2005).
[Crossref] [PubMed]

M. N. O’Sullivan-Hale, I. A. Khan, R. W. Boyd, and J. C. Howell, “Pixel entanglement: experimental realization of optically entangled d=3 and d=6 qudits,” Phys. Rev. Lett. 94(22), 220501 (2005).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

S. Cova, A. Longoni, and A. Andreoni, “Towards picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52(3), 408–412 (1981).
[Crossref]

Other (1)

J. J. Field, R. Carriles, and J. Squier, “Photon-Counting Photobleaching Measurements and the Effect of Dispersion in Two-Photon Microscopy,” Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, Optical Society of America, JTuD58, (2009)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Characterization setup (for clarity, only four V-groove fibers are shown).

Fig. 2
Fig. 2

Histogram for thin-junction (solid line) and thick-junction (dotted line) SPAD showing experimental data when the fiber combiner is directly connected to the respective SPAD.

Fig. 3
Fig. 3

Position to time measurements using the fiber array and the thin junction SPAD. The lower part of the Figure represents the positioning of the transmission slit, demonstrating its position relative to that of the peak in the photon-counting histogram. The slight variations in peak height are due to the nominal differences in efficiency of each channel within the combiner.

Tables (2)

Tables Icon

Table 1 Comparison of the single-photon detection efficiency and the jitter of selected SPADs

Tables Icon

Table 2 Comparison of the number of modes and bits per photon for different detectors and binned data

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C = H ( a : b ) = H ( a ) H ( a | b )
H ( a ) = a i P ( a i ) log 2 P ( a i )
H ( a | b ) = a i b i P ( a i , b i ) log 2 P ( a i | b i )

Metrics