Abstract

We present an experimental and computational investigation of the optical properties of thin metallic films periodically perforated with nanometric apertures and show that high transmission through such a structure is attributable to the localized surface plasmon (LSP) resonances of the aperture. The periodicity-related optical phenomena, including Wood’s anomaly and surface plasmon polariton (SPP) excitation, interfere with LSPs and generate Fano resonances with asymmetric spectral profiles. The transmission maximum of the Fano profile is related to the constructive interference between the LSP field and diffracted light propagating along the surface; the transmission minimum of the Fano profile is caused by the destructive interference between LSPs and SPPs. The study confirms the negative role of SPP in transmission through the structure.

© 2011 OSA

Full Article  |  PDF Article
Related Articles
Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films

Shih-Hui Chang, Stephen K. Gray, and George C. Schatz
Opt. Express 13(8) 3150-3165 (2005)

Hybridized nanocavities as single-polarized plasmonic antennas

Ahmet Ali Yanik, Ronen Adato, Shyamsunder Erramilli, and Hatice Altug
Opt. Express 17(23) 20900-20910 (2009)

Remote grating-assisted excitation of narrow-band surface plasmons

Tae-Woo Lee and Stephen K. Gray
Opt. Express 18(23) 23857-23864 (2010)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  2. I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25(9), 595–597 (2000).
    [Crossref]
  3. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [Crossref] [PubMed]
  4. S. M. Orbons, A. Roberts, D. N. Jamieson, M. I. Haftel, C. Schlockermann, D. Freeman, and B. Luther-Davies, “Extraordinary optical transmission with coaxial apertures,” Appl. Phys. Lett. 90(25), 251107 (2007).
    [Crossref]
  5. R. J. Blaikie, L. Lin, and R. J. Reeves, “Plasmon-enhanced optical transmission of nanostructured metallic multilayers,” Int. J. Nanotech. 6(3/4), 222–232 (2009).
    [Crossref]
  6. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [Crossref]
  7. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [Crossref] [PubMed]
  8. S. A. Darmanyan and A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67(3), 035424 (2003).
    [Crossref]
  9. M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75(5), 606–608 (1999).
    [Crossref]
  10. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
    [Crossref] [PubMed]
  11. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
    [Crossref] [PubMed]
  12. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
    [Crossref]
  13. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
    [Crossref] [PubMed]
  14. L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett. 95, (2009).
    [PubMed]
  15. C.-Y. Chen, M.-W. Tsai, T.-H. Chuang, Y.-T. Chang, and S.-C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 ‖2007|.
    [Crossref]
  16. Y.-W. Jiang, L. D.-C. Tzuang, Y.-H. Ye, Y.-T. Wu, M.-W. Tsai, C.-Y. Chen, and S.-C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express 17(4), 2631–2637 (2009).
    [Crossref] [PubMed]
  17. S. H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
    [Crossref] [PubMed]
  18. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  19. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
    [Crossref]
  20. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts,” Opt. Express 14(14), 6400–6413 (2006).
    [Crossref] [PubMed]
  21. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]

2010 (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

2009 (3)

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett. 95, (2009).
[PubMed]

R. J. Blaikie, L. Lin, and R. J. Reeves, “Plasmon-enhanced optical transmission of nanostructured metallic multilayers,” Int. J. Nanotech. 6(3/4), 222–232 (2009).
[Crossref]

Y.-W. Jiang, L. D.-C. Tzuang, Y.-H. Ye, Y.-T. Wu, M.-W. Tsai, C.-Y. Chen, and S.-C. Lee, “Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio,” Opt. Express 17(4), 2631–2637 (2009).
[Crossref] [PubMed]

2007 (2)

S. M. Orbons, A. Roberts, D. N. Jamieson, M. I. Haftel, C. Schlockermann, D. Freeman, and B. Luther-Davies, “Extraordinary optical transmission with coaxial apertures,” Appl. Phys. Lett. 90(25), 251107 (2007).
[Crossref]

C.-Y. Chen, M.-W. Tsai, T.-H. Chuang, Y.-T. Chang, and S.-C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 ‖2007|.
[Crossref]

2006 (1)

2005 (1)

2004 (3)

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[Crossref] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

2003 (2)

S. A. Darmanyan and A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67(3), 035424 (2003).
[Crossref]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

2002 (2)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (1)

M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75(5), 606–608 (1999).
[Crossref]

1998 (2)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Avrutsky, I.

Blaikie, R. J.

R. J. Blaikie, L. Lin, and R. J. Reeves, “Plasmon-enhanced optical transmission of nanostructured metallic multilayers,” Int. J. Nanotech. 6(3/4), 222–232 (2009).
[Crossref]

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[Crossref] [PubMed]

Chang, S. H.

Chang, Y.-T.

C.-Y. Chen, M.-W. Tsai, T.-H. Chuang, Y.-T. Chang, and S.-C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 ‖2007|.
[Crossref]

Chen, C.-Y.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Chuang, T.-H.

C.-Y. Chen, M.-W. Tsai, T.-H. Chuang, Y.-T. Chang, and S.-C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 ‖2007|.
[Crossref]

Darmanyan, S. A.

S. A. Darmanyan and A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67(3), 035424 (2003).
[Crossref]

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Ebbesen, T. W.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Enoch, S.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Freeman, D.

S. M. Orbons, A. Roberts, D. N. Jamieson, M. I. Haftel, C. Schlockermann, D. Freeman, and B. Luther-Davies, “Extraordinary optical transmission with coaxial apertures,” Appl. Phys. Lett. 90(25), 251107 (2007).
[Crossref]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Genet, C.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Gray, S. K.

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Haftel, M. I.

S. M. Orbons, A. Roberts, D. N. Jamieson, M. I. Haftel, C. Schlockermann, D. Freeman, and B. Luther-Davies, “Extraordinary optical transmission with coaxial apertures,” Appl. Phys. Lett. 90(25), 251107 (2007).
[Crossref]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Hande, L. B.

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett. 95, (2009).
[PubMed]

Jamieson, D. N.

S. M. Orbons, A. Roberts, D. N. Jamieson, M. I. Haftel, C. Schlockermann, D. Freeman, and B. Luther-Davies, “Extraordinary optical transmission with coaxial apertures,” Appl. Phys. Lett. 90(25), 251107 (2007).
[Crossref]

Jiang, Y.-W.

Kochergin, V.

Koerkamp, K. J. K.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Kuipers, L.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Lalanne, P.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[Crossref] [PubMed]

Lee, S.-C.

Lezec, H. J.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[Crossref] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Lin, L.

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett. 95, (2009).
[PubMed]

R. J. Blaikie, L. Lin, and R. J. Reeves, “Plasmon-enhanced optical transmission of nanostructured metallic multilayers,” Int. J. Nanotech. 6(3/4), 222–232 (2009).
[Crossref]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Luther-Davies, B.

S. M. Orbons, A. Roberts, D. N. Jamieson, M. I. Haftel, C. Schlockermann, D. Freeman, and B. Luther-Davies, “Extraordinary optical transmission with coaxial apertures,” Appl. Phys. Lett. 90(25), 251107 (2007).
[Crossref]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Mansuripur, M.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Moloney, J. V.

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Orbons, S. M.

S. M. Orbons, A. Roberts, D. N. Jamieson, M. I. Haftel, C. Schlockermann, D. Freeman, and B. Luther-Davies, “Extraordinary optical transmission with coaxial apertures,” Appl. Phys. Lett. 90(25), 251107 (2007).
[Crossref]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Reeves, R. J.

R. J. Blaikie, L. Lin, and R. J. Reeves, “Plasmon-enhanced optical transmission of nanostructured metallic multilayers,” Int. J. Nanotech. 6(3/4), 222–232 (2009).
[Crossref]

Roberts, A.

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett. 95, (2009).
[PubMed]

S. M. Orbons, A. Roberts, D. N. Jamieson, M. I. Haftel, C. Schlockermann, D. Freeman, and B. Luther-Davies, “Extraordinary optical transmission with coaxial apertures,” Appl. Phys. Lett. 90(25), 251107 (2007).
[Crossref]

Schatz, G. C.

Schlockermann, C.

S. M. Orbons, A. Roberts, D. N. Jamieson, M. I. Haftel, C. Schlockermann, D. Freeman, and B. Luther-Davies, “Extraordinary optical transmission with coaxial apertures,” Appl. Phys. Lett. 90(25), 251107 (2007).
[Crossref]

Segerink, F. B.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Thio, T.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Treacy, M. M. J.

M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75(5), 606–608 (1999).
[Crossref]

Tsai, M.-W.

Tzuang, L. D.-C.

van Exter, M. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

van Hulst, N. F.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Woerdman, J. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wu, Y.-T.

Xie, Y.

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

Ye, Y.-H.

Zakharian, A. R.

Zayats, A. V.

S. A. Darmanyan and A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67(3), 035424 (2003).
[Crossref]

Zhao, Y.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

S. M. Orbons, A. Roberts, D. N. Jamieson, M. I. Haftel, C. Schlockermann, D. Freeman, and B. Luther-Davies, “Extraordinary optical transmission with coaxial apertures,” Appl. Phys. Lett. 90(25), 251107 (2007).
[Crossref]

M. M. J. Treacy, “Dynamical diffraction in metallic optical gratings,” Appl. Phys. Lett. 75(5), 606–608 (1999).
[Crossref]

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett. 95, (2009).
[PubMed]

C.-Y. Chen, M.-W. Tsai, T.-H. Chuang, Y.-T. Chang, and S.-C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 ‖2007|.
[Crossref]

Int. J. Nanotech. (1)

R. J. Blaikie, L. Lin, and R. J. Reeves, “Plasmon-enhanced optical transmission of nanostructured metallic multilayers,” Int. J. Nanotech. 6(3/4), 222–232 (2009).
[Crossref]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Commun. (2)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. B (2)

S. A. Darmanyan and A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study,” Phys. Rev. B 67(3), 035424 (2003).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Phys. Rev. Lett. (3)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[Crossref] [PubMed]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[Crossref] [PubMed]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A schematic of the structure used in this study.

Fig. 2
Fig. 2

Measured transmission spectra of four fabricated samples. The geometric parameters of the structure are given in the key. The solid arrows and the triangles show the periodicity-dependent transmission minimum and maximum of interest, respectively.

Fig. 3
Fig. 3

Simulated transmission spectra of four structures with p ranges from 400 nm to 700 nm, and l and w are fixed to 250 nm and 40 nm, respectively. The periodicity-dependent transmission minimum and maximum are indicated as the arrows and the triangles, respectively.

Fig. 4
Fig. 4

The positions of the maxima and minima of Fano profile within the spectra as a function of structure periodicity. The theoretical locations of (0, ± 1) SPP resonances (dashed line) and (0, ± 1) WA excitation (solid line) on Ag/glass interface are also displayed.

Fig. 5
Fig. 5

Calculated field distributions on y-z plane passing through the centre of a cross-shaped aperture in the array with p = 600 nm, w = 40 nm and l = 250 nm.. (a) λ = 900 nm, (b) λ = 912 nm, (c) λ = 942 nm and (d) λ = 1050 nm. The arrows represent the electric field vectors and colour maps represent the amplitude of field component normal to the metal surface (Ez ). The colour maps are normalized to the maximum absolute value of Ez at λ = 1050 nm.

Fig. 6
Fig. 6

Ez profiles on x-y planes situating at 5 nm above the Au/glass interface in the Ag film (z = + 5 nm) and 5 nm below the interface in the glass substrate (z = −5 nm). Structure geometry: p = 600 nm, w = 40 nm and l = 350 nm. (a) λ = 912 nm, (b) λ = 942 nm and (c) λ = 1240 nm. The colour scales are normalized to the maximum absolute value of Ez on z = + 5 nm plane at λ = 942 nm.

Metrics