Abstract

Achieving sub-100 nm resolution over a broad visible bandwidth has long been an elusive goal in the nano-imaging of cell-surface interfaces. While metamaterial super-lenses and near-field optics have been previously demonstrated, these techniques can operate only at one wavelength, and do not provide accesses to the cell-surface interfaces. Here, we investigate a broadband 2D lens comprised of an oblate spheroidal dielectric cavity embedded just beneath a planar metal surface. The lens operates by adiabatically focusing asymmetric plasmon energies at sub-100 nm scale on the low-index side of the thin metal film formed between the cavity top and the planar metal surface. We then proposed the use of our lens in a high-resolution far-field confocal microscopy setup. Due to the surface-field nature of our lens, the presented system holds potential as an indispensable tool for cell-surface interfacial studies that require sub-100 nm hyper-spectral imaging analysis.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Engelman, “Membranes are more mosaic than fluid,” Nature 438(7068), 578–580 (2005).
    [CrossRef] [PubMed]
  2. Z. Ma, J. M. Gerton, L. A. Wade, and S. R. Quake, “Fluorescence near-field microscopy of DNA at sub-10 nm resolution,” Phys. Rev. Lett. 97(26), 260801 (2006).
    [CrossRef]
  3. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
    [CrossRef] [PubMed]
  4. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
    [CrossRef]
  5. A. W. Zimmerman, B. Joosten, R. Torensma, J. R. Parnes, F. N. van Leeuwen, and C. G. Figdor, “Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells,” Blood 107(8), 3212–3220 (2006).
    [CrossRef]
  6. R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99(10), 2891–2928 (1999).
    [CrossRef]
  7. L. Jin, A. C. Millard, J. P. Wuskell, X. Dong, D. Wu, H. A. Clark, and L. M. Loew, “Characterization and application of a new optical probe for membrane lipid domains,” Biophys. J. 90(7), 2563–2575 (2006).
    [CrossRef] [PubMed]
  8. R. Böhme, M. Richter, D. Cialla, P. Rösch, V. Deckert, and J. Popp, “Towards a specific characterisation of components on a cell surface - combined TERS-investigations of lipids and human cells,” J. Raman Spectrosc. 40(10), 1452–1457 (2009).
    [CrossRef]
  9. E. O. Potma and X. S. Xie, “Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 6(1), 77–79 (2005).
    [CrossRef] [PubMed]
  10. E. B. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994).
    [CrossRef]
  11. C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
    [CrossRef] [PubMed]
  12. M. C. Frassanito, C. Piccoli, V. Capozzi, D. Boffoli, A. Tabilio, and N. Capitanio, “Topological organisation of NADPH-oxidase in haematopoietic stem cell membrane: preliminat study by fluorescence near-field optical microscopy,” J. Microsc. 229(3), 517–524 (2008).
    [CrossRef] [PubMed]
  13. U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989).
    [CrossRef] [PubMed]
  14. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulation,” Phys. Rev. B 74(7), 075103 (2006).
    [CrossRef]
  15. P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  16. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
    [CrossRef] [PubMed]
  17. J. J. Burk and G. I. Stegeman, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5176 (1986).
  18. J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 11901–11904 (2007).
    [CrossRef] [PubMed]
  19. E. Snoeks, A. V. Blaaderen, T. V. Dillen, C. M. Kats, M. L. Brongersma, and A. Polman, “Colloidal Ellipsoids with Continuously Variable Shape,” Adv. Mater. 12(20), 1511–1514 (2000).
    [CrossRef]

2009

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

R. Böhme, M. Richter, D. Cialla, P. Rösch, V. Deckert, and J. Popp, “Towards a specific characterisation of components on a cell surface - combined TERS-investigations of lipids and human cells,” J. Raman Spectrosc. 40(10), 1452–1457 (2009).
[CrossRef]

2008

C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
[CrossRef] [PubMed]

M. C. Frassanito, C. Piccoli, V. Capozzi, D. Boffoli, A. Tabilio, and N. Capitanio, “Topological organisation of NADPH-oxidase in haematopoietic stem cell membrane: preliminat study by fluorescence near-field optical microscopy,” J. Microsc. 229(3), 517–524 (2008).
[CrossRef] [PubMed]

2007

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 11901–11904 (2007).
[CrossRef] [PubMed]

2006

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulation,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

L. Jin, A. C. Millard, J. P. Wuskell, X. Dong, D. Wu, H. A. Clark, and L. M. Loew, “Characterization and application of a new optical probe for membrane lipid domains,” Biophys. J. 90(7), 2563–2575 (2006).
[CrossRef] [PubMed]

A. W. Zimmerman, B. Joosten, R. Torensma, J. R. Parnes, F. N. van Leeuwen, and C. G. Figdor, “Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells,” Blood 107(8), 3212–3220 (2006).
[CrossRef]

Z. Ma, J. M. Gerton, L. A. Wade, and S. R. Quake, “Fluorescence near-field microscopy of DNA at sub-10 nm resolution,” Phys. Rev. Lett. 97(26), 260801 (2006).
[CrossRef]

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[CrossRef] [PubMed]

2005

D. M. Engelman, “Membranes are more mosaic than fluid,” Nature 438(7068), 578–580 (2005).
[CrossRef] [PubMed]

E. O. Potma and X. S. Xie, “Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 6(1), 77–79 (2005).
[CrossRef] [PubMed]

2000

E. Snoeks, A. V. Blaaderen, T. V. Dillen, C. M. Kats, M. L. Brongersma, and A. Polman, “Colloidal Ellipsoids with Continuously Variable Shape,” Adv. Mater. 12(20), 1511–1514 (2000).
[CrossRef]

1999

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99(10), 2891–2928 (1999).
[CrossRef]

1994

E. B. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994).
[CrossRef]

1989

U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989).
[CrossRef] [PubMed]

1986

J. J. Burk and G. I. Stegeman, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5176 (1986).

1972

P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Blaaderen, A. V.

E. Snoeks, A. V. Blaaderen, T. V. Dillen, C. M. Kats, M. L. Brongersma, and A. Polman, “Colloidal Ellipsoids with Continuously Variable Shape,” Adv. Mater. 12(20), 1511–1514 (2000).
[CrossRef]

Boffoli, D.

M. C. Frassanito, C. Piccoli, V. Capozzi, D. Boffoli, A. Tabilio, and N. Capitanio, “Topological organisation of NADPH-oxidase in haematopoietic stem cell membrane: preliminat study by fluorescence near-field optical microscopy,” J. Microsc. 229(3), 517–524 (2008).
[CrossRef] [PubMed]

Böhme, R.

R. Böhme, M. Richter, D. Cialla, P. Rösch, V. Deckert, and J. Popp, “Towards a specific characterisation of components on a cell surface - combined TERS-investigations of lipids and human cells,” J. Raman Spectrosc. 40(10), 1452–1457 (2009).
[CrossRef]

Brandl, D. W.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Brongersma, M. L.

E. Snoeks, A. V. Blaaderen, T. V. Dillen, C. M. Kats, M. L. Brongersma, and A. Polman, “Colloidal Ellipsoids with Continuously Variable Shape,” Adv. Mater. 12(20), 1511–1514 (2000).
[CrossRef]

Burk, J. J.

J. J. Burk and G. I. Stegeman, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5176 (1986).

Capitanio, N.

M. C. Frassanito, C. Piccoli, V. Capozzi, D. Boffoli, A. Tabilio, and N. Capitanio, “Topological organisation of NADPH-oxidase in haematopoietic stem cell membrane: preliminat study by fluorescence near-field optical microscopy,” J. Microsc. 229(3), 517–524 (2008).
[CrossRef] [PubMed]

Capozzi, V.

M. C. Frassanito, C. Piccoli, V. Capozzi, D. Boffoli, A. Tabilio, and N. Capitanio, “Topological organisation of NADPH-oxidase in haematopoietic stem cell membrane: preliminat study by fluorescence near-field optical microscopy,” J. Microsc. 229(3), 517–524 (2008).
[CrossRef] [PubMed]

Champion, J. A.

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 11901–11904 (2007).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Cialla, D.

R. Böhme, M. Richter, D. Cialla, P. Rösch, V. Deckert, and J. Popp, “Towards a specific characterisation of components on a cell surface - combined TERS-investigations of lipids and human cells,” J. Raman Spectrosc. 40(10), 1452–1457 (2009).
[CrossRef]

Clark, H. A.

L. Jin, A. C. Millard, J. P. Wuskell, X. Dong, D. Wu, H. A. Clark, and L. M. Loew, “Characterization and application of a new optical probe for membrane lipid domains,” Biophys. J. 90(7), 2563–2575 (2006).
[CrossRef] [PubMed]

Deckert, V.

R. Böhme, M. Richter, D. Cialla, P. Rösch, V. Deckert, and J. Popp, “Towards a specific characterisation of components on a cell surface - combined TERS-investigations of lipids and human cells,” J. Raman Spectrosc. 40(10), 1452–1457 (2009).
[CrossRef]

Dillen, T. V.

E. Snoeks, A. V. Blaaderen, T. V. Dillen, C. M. Kats, M. L. Brongersma, and A. Polman, “Colloidal Ellipsoids with Continuously Variable Shape,” Adv. Mater. 12(20), 1511–1514 (2000).
[CrossRef]

Dong, X.

L. Jin, A. C. Millard, J. P. Wuskell, X. Dong, D. Wu, H. A. Clark, and L. M. Loew, “Characterization and application of a new optical probe for membrane lipid domains,” Biophys. J. 90(7), 2563–2575 (2006).
[CrossRef] [PubMed]

Dunn, R. C.

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99(10), 2891–2928 (1999).
[CrossRef]

Engelman, D. M.

D. M. Engelman, “Membranes are more mosaic than fluid,” Nature 438(7068), 578–580 (2005).
[CrossRef] [PubMed]

Engheta, N.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulation,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Figdor, C. G.

A. W. Zimmerman, B. Joosten, R. Torensma, J. R. Parnes, F. N. van Leeuwen, and C. G. Figdor, “Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells,” Blood 107(8), 3212–3220 (2006).
[CrossRef]

Fischer, U. C.

U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989).
[CrossRef] [PubMed]

Frassanito, M. C.

M. C. Frassanito, C. Piccoli, V. Capozzi, D. Boffoli, A. Tabilio, and N. Capitanio, “Topological organisation of NADPH-oxidase in haematopoietic stem cell membrane: preliminat study by fluorescence near-field optical microscopy,” J. Microsc. 229(3), 517–524 (2008).
[CrossRef] [PubMed]

Gerton, J. M.

Z. Ma, J. M. Gerton, L. A. Wade, and S. R. Quake, “Fluorescence near-field microscopy of DNA at sub-10 nm resolution,” Phys. Rev. Lett. 97(26), 260801 (2006).
[CrossRef]

Halas, N. J.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Hell, S. W.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[CrossRef] [PubMed]

Höppener, C.

C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
[CrossRef] [PubMed]

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

Jahn, R.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[CrossRef] [PubMed]

Jin, L.

L. Jin, A. C. Millard, J. P. Wuskell, X. Dong, D. Wu, H. A. Clark, and L. M. Loew, “Characterization and application of a new optical probe for membrane lipid domains,” Biophys. J. 90(7), 2563–2575 (2006).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Joosten, B.

A. W. Zimmerman, B. Joosten, R. Torensma, J. R. Parnes, F. N. van Leeuwen, and C. G. Figdor, “Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells,” Blood 107(8), 3212–3220 (2006).
[CrossRef]

Katare, Y. K.

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 11901–11904 (2007).
[CrossRef] [PubMed]

Kats, C. M.

E. Snoeks, A. V. Blaaderen, T. V. Dillen, C. M. Kats, M. L. Brongersma, and A. Polman, “Colloidal Ellipsoids with Continuously Variable Shape,” Adv. Mater. 12(20), 1511–1514 (2000).
[CrossRef]

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

Kino, G. S.

E. B. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994).
[CrossRef]

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Loew, L. M.

L. Jin, A. C. Millard, J. P. Wuskell, X. Dong, D. Wu, H. A. Clark, and L. M. Loew, “Characterization and application of a new optical probe for membrane lipid domains,” Biophys. J. 90(7), 2563–2575 (2006).
[CrossRef] [PubMed]

Ma, Z.

Z. Ma, J. M. Gerton, L. A. Wade, and S. R. Quake, “Fluorescence near-field microscopy of DNA at sub-10 nm resolution,” Phys. Rev. Lett. 97(26), 260801 (2006).
[CrossRef]

Mamin, H. J.

E. B. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994).
[CrossRef]

Millard, A. C.

L. Jin, A. C. Millard, J. P. Wuskell, X. Dong, D. Wu, H. A. Clark, and L. M. Loew, “Characterization and application of a new optical probe for membrane lipid domains,” Biophys. J. 90(7), 2563–2575 (2006).
[CrossRef] [PubMed]

Mitragotri, S.

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 11901–11904 (2007).
[CrossRef] [PubMed]

Nordlander, P.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Novotny, L.

C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
[CrossRef] [PubMed]

Parnes, J. R.

A. W. Zimmerman, B. Joosten, R. Torensma, J. R. Parnes, F. N. van Leeuwen, and C. G. Figdor, “Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells,” Blood 107(8), 3212–3220 (2006).
[CrossRef]

Piccoli, C.

M. C. Frassanito, C. Piccoli, V. Capozzi, D. Boffoli, A. Tabilio, and N. Capitanio, “Topological organisation of NADPH-oxidase in haematopoietic stem cell membrane: preliminat study by fluorescence near-field optical microscopy,” J. Microsc. 229(3), 517–524 (2008).
[CrossRef] [PubMed]

Pohl, D. W.

U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989).
[CrossRef] [PubMed]

Polman, A.

E. Snoeks, A. V. Blaaderen, T. V. Dillen, C. M. Kats, M. L. Brongersma, and A. Polman, “Colloidal Ellipsoids with Continuously Variable Shape,” Adv. Mater. 12(20), 1511–1514 (2000).
[CrossRef]

Popp, J.

R. Böhme, M. Richter, D. Cialla, P. Rösch, V. Deckert, and J. Popp, “Towards a specific characterisation of components on a cell surface - combined TERS-investigations of lipids and human cells,” J. Raman Spectrosc. 40(10), 1452–1457 (2009).
[CrossRef]

Potma, E. O.

E. O. Potma and X. S. Xie, “Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 6(1), 77–79 (2005).
[CrossRef] [PubMed]

Quake, S. R.

Z. Ma, J. M. Gerton, L. A. Wade, and S. R. Quake, “Fluorescence near-field microscopy of DNA at sub-10 nm resolution,” Phys. Rev. Lett. 97(26), 260801 (2006).
[CrossRef]

Richter, M.

R. Böhme, M. Richter, D. Cialla, P. Rösch, V. Deckert, and J. Popp, “Towards a specific characterisation of components on a cell surface - combined TERS-investigations of lipids and human cells,” J. Raman Spectrosc. 40(10), 1452–1457 (2009).
[CrossRef]

Rizzoli, S. O.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[CrossRef] [PubMed]

Rösch, P.

R. Böhme, M. Richter, D. Cialla, P. Rösch, V. Deckert, and J. Popp, “Towards a specific characterisation of components on a cell surface - combined TERS-investigations of lipids and human cells,” J. Raman Spectrosc. 40(10), 1452–1457 (2009).
[CrossRef]

Rugar, D.

E. B. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994).
[CrossRef]

Salandrino, A.

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulation,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

Snoeks, E.

E. Snoeks, A. V. Blaaderen, T. V. Dillen, C. M. Kats, M. L. Brongersma, and A. Polman, “Colloidal Ellipsoids with Continuously Variable Shape,” Adv. Mater. 12(20), 1511–1514 (2000).
[CrossRef]

Stegeman, G. I.

J. J. Burk and G. I. Stegeman, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5176 (1986).

Studenmund, W. R.

E. B. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994).
[CrossRef]

Tabilio, A.

M. C. Frassanito, C. Piccoli, V. Capozzi, D. Boffoli, A. Tabilio, and N. Capitanio, “Topological organisation of NADPH-oxidase in haematopoietic stem cell membrane: preliminat study by fluorescence near-field optical microscopy,” J. Microsc. 229(3), 517–524 (2008).
[CrossRef] [PubMed]

Terris, E. B.

E. B. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994).
[CrossRef]

Torensma, R.

A. W. Zimmerman, B. Joosten, R. Torensma, J. R. Parnes, F. N. van Leeuwen, and C. G. Figdor, “Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells,” Blood 107(8), 3212–3220 (2006).
[CrossRef]

van Leeuwen, F. N.

A. W. Zimmerman, B. Joosten, R. Torensma, J. R. Parnes, F. N. van Leeuwen, and C. G. Figdor, “Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells,” Blood 107(8), 3212–3220 (2006).
[CrossRef]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

Wade, L. A.

Z. Ma, J. M. Gerton, L. A. Wade, and S. R. Quake, “Fluorescence near-field microscopy of DNA at sub-10 nm resolution,” Phys. Rev. Lett. 97(26), 260801 (2006).
[CrossRef]

Wang, H.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Westphal, V.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[CrossRef] [PubMed]

Willig, K. I.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[CrossRef] [PubMed]

Wu, D.

L. Jin, A. C. Millard, J. P. Wuskell, X. Dong, D. Wu, H. A. Clark, and L. M. Loew, “Characterization and application of a new optical probe for membrane lipid domains,” Biophys. J. 90(7), 2563–2575 (2006).
[CrossRef] [PubMed]

Wuskell, J. P.

L. Jin, A. C. Millard, J. P. Wuskell, X. Dong, D. Wu, H. A. Clark, and L. M. Loew, “Characterization and application of a new optical probe for membrane lipid domains,” Biophys. J. 90(7), 2563–2575 (2006).
[CrossRef] [PubMed]

Xie, X. S.

E. O. Potma and X. S. Xie, “Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 6(1), 77–79 (2005).
[CrossRef] [PubMed]

Zimmerman, A. W.

A. W. Zimmerman, B. Joosten, R. Torensma, J. R. Parnes, F. N. van Leeuwen, and C. G. Figdor, “Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells,” Blood 107(8), 3212–3220 (2006).
[CrossRef]

Adv. Mater.

E. Snoeks, A. V. Blaaderen, T. V. Dillen, C. M. Kats, M. L. Brongersma, and A. Polman, “Colloidal Ellipsoids with Continuously Variable Shape,” Adv. Mater. 12(20), 1511–1514 (2000).
[CrossRef]

Appl. Phys. Lett.

E. B. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388 (1994).
[CrossRef]

Biophys. J.

L. Jin, A. C. Millard, J. P. Wuskell, X. Dong, D. Wu, H. A. Clark, and L. M. Loew, “Characterization and application of a new optical probe for membrane lipid domains,” Biophys. J. 90(7), 2563–2575 (2006).
[CrossRef] [PubMed]

Blood

A. W. Zimmerman, B. Joosten, R. Torensma, J. R. Parnes, F. N. van Leeuwen, and C. G. Figdor, “Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells,” Blood 107(8), 3212–3220 (2006).
[CrossRef]

Chem. Rev.

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99(10), 2891–2928 (1999).
[CrossRef]

ChemPhysChem

E. O. Potma and X. S. Xie, “Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 6(1), 77–79 (2005).
[CrossRef] [PubMed]

J. Microsc.

M. C. Frassanito, C. Piccoli, V. Capozzi, D. Boffoli, A. Tabilio, and N. Capitanio, “Topological organisation of NADPH-oxidase in haematopoietic stem cell membrane: preliminat study by fluorescence near-field optical microscopy,” J. Microsc. 229(3), 517–524 (2008).
[CrossRef] [PubMed]

J. Raman Spectrosc.

R. Böhme, M. Richter, D. Cialla, P. Rösch, V. Deckert, and J. Popp, “Towards a specific characterisation of components on a cell surface - combined TERS-investigations of lipids and human cells,” J. Raman Spectrosc. 40(10), 1452–1457 (2009).
[CrossRef]

Nano Lett.

C. Höppener and L. Novotny, “Antenna-based optical imaging of single Ca2+ transmembrane proteins in liquids,” Nano Lett. 8(2), 642–646 (2008).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Nat. Photonics

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

Nature

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, “STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis,” Nature 440(7086), 935–939 (2006).
[CrossRef] [PubMed]

D. M. Engelman, “Membranes are more mosaic than fluid,” Nature 438(7068), 578–580 (2005).
[CrossRef] [PubMed]

Phys. Rev. B

J. J. Burk and G. I. Stegeman, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5176 (1986).

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulation,” Phys. Rev. B 74(7), 075103 (2006).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

U. C. Fischer and D. W. Pohl, “Observation of single-particle plasmons by near-field optical microscopy,” Phys. Rev. Lett. 62(4), 458–461 (1989).
[CrossRef] [PubMed]

Z. Ma, J. M. Gerton, L. A. Wade, and S. R. Quake, “Fluorescence near-field microscopy of DNA at sub-10 nm resolution,” Phys. Rev. Lett. 97(26), 260801 (2006).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro- and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. U.S.A. 104(29), 11901–11904 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Electromagnetic interactions between an embedded oblate dielectric cavity and an incident surface plasmon plane wave. (a), An oblate cavity with a dielectric constant ε c = 1.45 2 embedded at a depth d underneath an Au surface. The dielectric medium above the metal surface is assumed to be water with a dielectric constant ε 1 = 1.33 2 . The plasmon wave is propagating in the positive x-direction. (b, c), Normalized field-strength distributions ( | E x | 2 + | E y | 2 + | E z | 2 ) on a vertical plane (i.e. xz-plane) cutting through the center of the cavity. (b), Field distributions correspond to a cavity depth d = 10 nm, while (c) d = 20 nm. TF in (b) and (c) indicates thin film region formed between the top of the embedded cavity and the planar metal surface.

Fig. 2
Fig. 2

Instantaneous field distribution E z ( t ) on the surface of the cavity system. Dashed box indicates the region of interest. (a) and (b) show the instantaneous field distributions in the vicinity of the thin metal film at a cavity depth d = 10 nm and 20 nm, respectively. White-colored arrows indicate the field directions. (c) shows the plasmonic dispersion curves for a thin Au slab bounded by asymmetric dielectric mediums, ε 2 = 1.33 2 and ε 2 = 1.45 2 . Asymmetric and symmetric plasmonic modes are denoted as a b and s b , respectively. Dark curve corresponds to the plasmonic dispersion of a semi-infinite Au bulk. Red circles indicate a b -SPP momenta for three different film thicknesses at an angular frequency of 2.9 × 10 15 r a d s 1 . (A), (B) and (C) indicates the SPP momenta for the semi-infinite Au, a 20 nm and 10 nm metal slab, respectively, at the above frequency.

Fig. 3
Fig. 3

SPP focusing by embedded oblate dielectric cavity. (a), Normalized SPP field distributions formed by a 3-μm/230-nm oblate cavity embedded 10 nm beneath the Au surface. (b), Normalized SPP field distributions formed by a 3-μm/230-nm oblate cavity embedded 20 nm beneath the Au surface. Broken circles in (a) and (b) indicate the position of the embedded cavities. (c), Ray optics model to explain SPP focusing by the 2D lens.

Fig. 4
Fig. 4

Formation of a narrow plasmon focus by 2D lens. (a), Embedded cavity is situated at the center of a ring of closely-packed SPP point sources. The total number of SPP sources is assumed to be 400 in the current study. The radius of the SPP ring is taken to be 5 μm. Dashed square box indicates the area for which the plasmon fields shown in (b) and (c) are calculated. (b, c), Normalized field distributions for plasmonic focus (PF) obtained without and with the embedded cavities, respectively. (d), Field strength profiles of the PF along the white dashed horizontal lines shown in b and c.

Fig. 5
Fig. 5

A confocal far-field microscopy system constructed with a scanning radially-polarized beam and the 2D lens. A xy-mirror is used to facilitate scanning of the incident beam, as well as ensuring returned signals be directed into a detection fibre. θ i and φ i are the inclination and azimuthal angles of the incident beam, respectively. Blue arrows in the diagram indicate incident SPPs, while red arrows returned SPPs from samples within the lens.

Fig. 6
Fig. 6

(a, b), Field distributions obtained at the center of the SPP ring under linear-polarization without and with the 2D lens respectively, at a normal incidence condition. (c, d), Field distributions obtained at the center of the SPP ring under radial-polarization without and with the 2D lens respectively, at a normal incidence condition. (e-g), Shifting of PF position in the absence of the embedded cavity for a θ i -range between 0° to 3°. (h-j), Shifting of the PF position in the presence of the embedded cavity for the same angle range. In all cases, the PF are shifted by up to 560 nm. (k), Field strength profiles for the PFs shown in (h–j).

Fig. 7
Fig. 7

Resolving power of the 2D lens. (a – c) shows fluorophores with different separations. (d – f) are simulated images of the fluorophores taken with the 2D lens at different free-space incident wavelengths. (g – i), Simulated images of the fluorophores taken without the 2D lens at different free-space incident wavelengths. (j), Normalized intensity profiles derived with or without the 2D lens. Resolving power at different free-space incident wavelengths.

Fig. 8
Fig. 8

Fabrication scheme: 1) Deposition of a thin Au film; 2) Deposition of oblate dielectric micro-particle; 3) Milling of circular slit; 4) Masked deposition of au; 5) Deposition of SiO2; 6) Peeling of mica template.

Metrics