Abstract

High reflectivity, electrothermal and electrostatic MEMS (Micro-Electro-Mechanical Systems) micromirrors were used as a control element within a Nd-doped laser cavity. Stable continuous-wave oscillation of a 3-mirror Nd:YLF laser at a maximum output power of 200mW was limited by thermally-induced surface deformation of the micromirror. An electrostatic micromirror was used to induce Q-switching, resulting in pulse durations of 220ns - 2μs over a repetition frequency range of 6kHz - 40kHz.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Solgaard, Photonic Microsystems: Micro and Nanotechnology Applied to Optical Devices and Systems, (Springer, New York, 2009), Chap. 7.
  2. A. Q. Liu, X. Zhang, J. Li, S. H. G. Teo, F. Lewis, and B. Borovic, Photonic MEMS Devices: Design, Fabrication and Control, (CRC Press, Boca Ranton, USA, 2009).
  3. Y.-A. Peter, H. P. Herzig, E. Rochat, R. Dändliker, C. Marxer, and N. F. de Rooij, “Pulsed fiber laser using micro-electro-mechanical mirrors,” Opt. Eng. 38(4), 636–640 (1999).
    [CrossRef]
  4. D. Bouyge, A. Crunteanu, D. Sabourdy, P. Blondy, V. Couderc, J. Lhermite, L. Grossard, and A. Barthélémy, “Integration of micro-electro-mechanical deformable mirrors in doped fiber amplifiers,” Microsyst. Technol. 13(11-12), 1607–1613 (2007).
    [CrossRef]
  5. A. Inoue, T. Komikado, K. Kinoshita, J. Hayashi, and S. Umegaki, “Deformable Mirror for Mechanical Q-Switching of Laser-Diode-Pumped Microchip Laser,” Jpn. J. Appl. Phys. 46(42), L1016–L1018 (2007).
    [CrossRef]
  6. M. Fabert, A. Desfarges-Berthelemot, V. Kermène, A. Crunteanu, D. Bouyge, and P. Blondy, “Ytterbium-doped fibre laser Q-switched by a cantilever-type micro-mirror,” Opt. Express 16(26), 22064–22071 (2008).
    [CrossRef] [PubMed]
  7. M. Fabert, A. Crunteanu, V. Kermène, A. Desfarges-Berthelemot, D. Bouyge, and P. Blondy, “8ns pulses from a compact fibre-laser Q-switched by MOEMS,” in Conference on Laser and Electro-Optics 2009, Technical Digest (CD) (Optical Society of America, 2009), paper CFB6.
  8. S. Schilt, K. Zogal, B. Kögel, P. Meissner, M. Maute, R. Protasio, and M.-C. Amman, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 100(2), 321–329 (2010).
    [CrossRef]
  9. S. Hsu, T. Klose, C. Drabe, and H. Shenk, “Fabrication and characterization of a dynamically flat high resolution micro-scanner,” J. Opt. A, Pure Appl. Opt. 10(4), 044005 (2008).
    [CrossRef]
  10. D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004).
    [CrossRef]
  11. A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
    [CrossRef]
  12. T. Sandner, J. U. Schmidt, H. Schenk, H. Lakner, M. Yang, A. Gatto, N. Kaiser, S. Braun, T. Foltyn, and A. Leson, “Highly reflective optical coatings for high power applications of micro scanning mirrors in the UV-VIS-NIR spectral region,” Proc. SPIE 6114, H1140–H1140 (2006).
  13. MEMSCAP Inc, 12 Alexander Drive, Building 100, Research Triangle Park, NC 27709, USA, www.memscap.com .
  14. L. Li, M. Begbie, G. Brown, and D. Uttamchandani, “Design, simulation and characterization of a MEMS optical scanner,” J. Micromech. Microeng. 17(9), 1781–1787 (2007).
    [CrossRef]
  15. W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16(15), 10943–10955 (2008).
    [CrossRef] [PubMed]
  16. W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17(14), 12057–12069 (2009).
    [CrossRef] [PubMed]
  17. Cutting Edge Optronics, 20 Point West Boulevard, St. Charles, MO 63301, USA, http://www.st.northropgrumman.com/ceolaser/ .
  18. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2-3), 255–267 (1999).
    [CrossRef]
  19. R. Cheung, Silicon Carbide Microelectromechanical systems for harsh environments (Imperial College Press, London, UK, 2006).
  20. M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, Properties of advanced semiconductor materials: GaN, AIn, InN, BN, SiC, SiGe (John Wiley & Sons, New York, USA, 2001), Chap. 5.

2010 (1)

S. Schilt, K. Zogal, B. Kögel, P. Meissner, M. Maute, R. Protasio, and M.-C. Amman, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 100(2), 321–329 (2010).
[CrossRef]

2009 (1)

W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17(14), 12057–12069 (2009).
[CrossRef] [PubMed]

2008 (3)

W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16(15), 10943–10955 (2008).
[CrossRef] [PubMed]

S. Hsu, T. Klose, C. Drabe, and H. Shenk, “Fabrication and characterization of a dynamically flat high resolution micro-scanner,” J. Opt. A, Pure Appl. Opt. 10(4), 044005 (2008).
[CrossRef]

M. Fabert, A. Desfarges-Berthelemot, V. Kermène, A. Crunteanu, D. Bouyge, and P. Blondy, “Ytterbium-doped fibre laser Q-switched by a cantilever-type micro-mirror,” Opt. Express 16(26), 22064–22071 (2008).
[CrossRef] [PubMed]

2007 (3)

D. Bouyge, A. Crunteanu, D. Sabourdy, P. Blondy, V. Couderc, J. Lhermite, L. Grossard, and A. Barthélémy, “Integration of micro-electro-mechanical deformable mirrors in doped fiber amplifiers,” Microsyst. Technol. 13(11-12), 1607–1613 (2007).
[CrossRef]

A. Inoue, T. Komikado, K. Kinoshita, J. Hayashi, and S. Umegaki, “Deformable Mirror for Mechanical Q-Switching of Laser-Diode-Pumped Microchip Laser,” Jpn. J. Appl. Phys. 46(42), L1016–L1018 (2007).
[CrossRef]

L. Li, M. Begbie, G. Brown, and D. Uttamchandani, “Design, simulation and characterization of a MEMS optical scanner,” J. Micromech. Microeng. 17(9), 1781–1787 (2007).
[CrossRef]

2006 (1)

T. Sandner, J. U. Schmidt, H. Schenk, H. Lakner, M. Yang, A. Gatto, N. Kaiser, S. Braun, T. Foltyn, and A. Leson, “Highly reflective optical coatings for high power applications of micro scanning mirrors in the UV-VIS-NIR spectral region,” Proc. SPIE 6114, H1140–H1140 (2006).

2004 (2)

D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004).
[CrossRef]

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

1999 (2)

Y.-A. Peter, H. P. Herzig, E. Rochat, R. Dändliker, C. Marxer, and N. F. de Rooij, “Pulsed fiber laser using micro-electro-mechanical mirrors,” Opt. Eng. 38(4), 636–640 (1999).
[CrossRef]

J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2-3), 255–267 (1999).
[CrossRef]

Amman, M.-C.

S. Schilt, K. Zogal, B. Kögel, P. Meissner, M. Maute, R. Protasio, and M.-C. Amman, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 100(2), 321–329 (2010).
[CrossRef]

Barthélémy, A.

D. Bouyge, A. Crunteanu, D. Sabourdy, P. Blondy, V. Couderc, J. Lhermite, L. Grossard, and A. Barthélémy, “Integration of micro-electro-mechanical deformable mirrors in doped fiber amplifiers,” Microsyst. Technol. 13(11-12), 1607–1613 (2007).
[CrossRef]

Begbie, M.

L. Li, M. Begbie, G. Brown, and D. Uttamchandani, “Design, simulation and characterization of a MEMS optical scanner,” J. Micromech. Microeng. 17(9), 1781–1787 (2007).
[CrossRef]

Blondy, P.

M. Fabert, A. Desfarges-Berthelemot, V. Kermène, A. Crunteanu, D. Bouyge, and P. Blondy, “Ytterbium-doped fibre laser Q-switched by a cantilever-type micro-mirror,” Opt. Express 16(26), 22064–22071 (2008).
[CrossRef] [PubMed]

D. Bouyge, A. Crunteanu, D. Sabourdy, P. Blondy, V. Couderc, J. Lhermite, L. Grossard, and A. Barthélémy, “Integration of micro-electro-mechanical deformable mirrors in doped fiber amplifiers,” Microsyst. Technol. 13(11-12), 1607–1613 (2007).
[CrossRef]

Bouyge, D.

M. Fabert, A. Desfarges-Berthelemot, V. Kermène, A. Crunteanu, D. Bouyge, and P. Blondy, “Ytterbium-doped fibre laser Q-switched by a cantilever-type micro-mirror,” Opt. Express 16(26), 22064–22071 (2008).
[CrossRef] [PubMed]

D. Bouyge, A. Crunteanu, D. Sabourdy, P. Blondy, V. Couderc, J. Lhermite, L. Grossard, and A. Barthélémy, “Integration of micro-electro-mechanical deformable mirrors in doped fiber amplifiers,” Microsyst. Technol. 13(11-12), 1607–1613 (2007).
[CrossRef]

Braun, S.

T. Sandner, J. U. Schmidt, H. Schenk, H. Lakner, M. Yang, A. Gatto, N. Kaiser, S. Braun, T. Foltyn, and A. Leson, “Highly reflective optical coatings for high power applications of micro scanning mirrors in the UV-VIS-NIR spectral region,” Proc. SPIE 6114, H1140–H1140 (2006).

Brown, G.

L. Li, M. Begbie, G. Brown, and D. Uttamchandani, “Design, simulation and characterization of a MEMS optical scanner,” J. Micromech. Microeng. 17(9), 1781–1787 (2007).
[CrossRef]

Burns, D.

W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17(14), 12057–12069 (2009).
[CrossRef] [PubMed]

W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16(15), 10943–10955 (2008).
[CrossRef] [PubMed]

Couderc, V.

D. Bouyge, A. Crunteanu, D. Sabourdy, P. Blondy, V. Couderc, J. Lhermite, L. Grossard, and A. Barthélémy, “Integration of micro-electro-mechanical deformable mirrors in doped fiber amplifiers,” Microsyst. Technol. 13(11-12), 1607–1613 (2007).
[CrossRef]

Crunteanu, A.

M. Fabert, A. Desfarges-Berthelemot, V. Kermène, A. Crunteanu, D. Bouyge, and P. Blondy, “Ytterbium-doped fibre laser Q-switched by a cantilever-type micro-mirror,” Opt. Express 16(26), 22064–22071 (2008).
[CrossRef] [PubMed]

D. Bouyge, A. Crunteanu, D. Sabourdy, P. Blondy, V. Couderc, J. Lhermite, L. Grossard, and A. Barthélémy, “Integration of micro-electro-mechanical deformable mirrors in doped fiber amplifiers,” Microsyst. Technol. 13(11-12), 1607–1613 (2007).
[CrossRef]

Dändliker, R.

Y.-A. Peter, H. P. Herzig, E. Rochat, R. Dändliker, C. Marxer, and N. F. de Rooij, “Pulsed fiber laser using micro-electro-mechanical mirrors,” Opt. Eng. 38(4), 636–640 (1999).
[CrossRef]

de Rooij, N. F.

Y.-A. Peter, H. P. Herzig, E. Rochat, R. Dändliker, C. Marxer, and N. F. de Rooij, “Pulsed fiber laser using micro-electro-mechanical mirrors,” Opt. Eng. 38(4), 636–640 (1999).
[CrossRef]

Desfarges-Berthelemot, A.

M. Fabert, A. Desfarges-Berthelemot, V. Kermène, A. Crunteanu, D. Bouyge, and P. Blondy, “Ytterbium-doped fibre laser Q-switched by a cantilever-type micro-mirror,” Opt. Express 16(26), 22064–22071 (2008).
[CrossRef] [PubMed]

Drabe, C.

S. Hsu, T. Klose, C. Drabe, and H. Shenk, “Fabrication and characterization of a dynamically flat high resolution micro-scanner,” J. Opt. A, Pure Appl. Opt. 10(4), 044005 (2008).
[CrossRef]

Fabert, M.

M. Fabert, A. Desfarges-Berthelemot, V. Kermène, A. Crunteanu, D. Bouyge, and P. Blondy, “Ytterbium-doped fibre laser Q-switched by a cantilever-type micro-mirror,” Opt. Express 16(26), 22064–22071 (2008).
[CrossRef] [PubMed]

Fedder, G. K.

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

Foltyn, T.

T. Sandner, J. U. Schmidt, H. Schenk, H. Lakner, M. Yang, A. Gatto, N. Kaiser, S. Braun, T. Foltyn, and A. Leson, “Highly reflective optical coatings for high power applications of micro scanning mirrors in the UV-VIS-NIR spectral region,” Proc. SPIE 6114, H1140–H1140 (2006).

Gatto, A.

T. Sandner, J. U. Schmidt, H. Schenk, H. Lakner, M. Yang, A. Gatto, N. Kaiser, S. Braun, T. Foltyn, and A. Leson, “Highly reflective optical coatings for high power applications of micro scanning mirrors in the UV-VIS-NIR spectral region,” Proc. SPIE 6114, H1140–H1140 (2006).

Griffith, M.

W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17(14), 12057–12069 (2009).
[CrossRef] [PubMed]

Grossard, L.

D. Bouyge, A. Crunteanu, D. Sabourdy, P. Blondy, V. Couderc, J. Lhermite, L. Grossard, and A. Barthélémy, “Integration of micro-electro-mechanical deformable mirrors in doped fiber amplifiers,” Microsyst. Technol. 13(11-12), 1607–1613 (2007).
[CrossRef]

Hah, D.

D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004).
[CrossRef]

Hayashi, J.

A. Inoue, T. Komikado, K. Kinoshita, J. Hayashi, and S. Umegaki, “Deformable Mirror for Mechanical Q-Switching of Laser-Diode-Pumped Microchip Laser,” Jpn. J. Appl. Phys. 46(42), L1016–L1018 (2007).
[CrossRef]

Herzig, H. P.

Y.-A. Peter, H. P. Herzig, E. Rochat, R. Dändliker, C. Marxer, and N. F. de Rooij, “Pulsed fiber laser using micro-electro-mechanical mirrors,” Opt. Eng. 38(4), 636–640 (1999).
[CrossRef]

Hsu, S.

S. Hsu, T. Klose, C. Drabe, and H. Shenk, “Fabrication and characterization of a dynamically flat high resolution micro-scanner,” J. Opt. A, Pure Appl. Opt. 10(4), 044005 (2008).
[CrossRef]

Inoue, A.

A. Inoue, T. Komikado, K. Kinoshita, J. Hayashi, and S. Umegaki, “Deformable Mirror for Mechanical Q-Switching of Laser-Diode-Pumped Microchip Laser,” Jpn. J. Appl. Phys. 46(42), L1016–L1018 (2007).
[CrossRef]

Jain, A.

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

Kaiser, N.

T. Sandner, J. U. Schmidt, H. Schenk, H. Lakner, M. Yang, A. Gatto, N. Kaiser, S. Braun, T. Foltyn, and A. Leson, “Highly reflective optical coatings for high power applications of micro scanning mirrors in the UV-VIS-NIR spectral region,” Proc. SPIE 6114, H1140–H1140 (2006).

Kermène, V.

M. Fabert, A. Desfarges-Berthelemot, V. Kermène, A. Crunteanu, D. Bouyge, and P. Blondy, “Ytterbium-doped fibre laser Q-switched by a cantilever-type micro-mirror,” Opt. Express 16(26), 22064–22071 (2008).
[CrossRef] [PubMed]

Kinoshita, K.

A. Inoue, T. Komikado, K. Kinoshita, J. Hayashi, and S. Umegaki, “Deformable Mirror for Mechanical Q-Switching of Laser-Diode-Pumped Microchip Laser,” Jpn. J. Appl. Phys. 46(42), L1016–L1018 (2007).
[CrossRef]

Klose, T.

S. Hsu, T. Klose, C. Drabe, and H. Shenk, “Fabrication and characterization of a dynamically flat high resolution micro-scanner,” J. Opt. A, Pure Appl. Opt. 10(4), 044005 (2008).
[CrossRef]

Kögel, B.

S. Schilt, K. Zogal, B. Kögel, P. Meissner, M. Maute, R. Protasio, and M.-C. Amman, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 100(2), 321–329 (2010).
[CrossRef]

Komikado, T.

A. Inoue, T. Komikado, K. Kinoshita, J. Hayashi, and S. Umegaki, “Deformable Mirror for Mechanical Q-Switching of Laser-Diode-Pumped Microchip Laser,” Jpn. J. Appl. Phys. 46(42), L1016–L1018 (2007).
[CrossRef]

Kopa, A.

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

Lakner, H.

T. Sandner, J. U. Schmidt, H. Schenk, H. Lakner, M. Yang, A. Gatto, N. Kaiser, S. Braun, T. Foltyn, and A. Leson, “Highly reflective optical coatings for high power applications of micro scanning mirrors in the UV-VIS-NIR spectral region,” Proc. SPIE 6114, H1140–H1140 (2006).

Laycock, L.

W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17(14), 12057–12069 (2009).
[CrossRef] [PubMed]

Leson, A.

T. Sandner, J. U. Schmidt, H. Schenk, H. Lakner, M. Yang, A. Gatto, N. Kaiser, S. Braun, T. Foltyn, and A. Leson, “Highly reflective optical coatings for high power applications of micro scanning mirrors in the UV-VIS-NIR spectral region,” Proc. SPIE 6114, H1140–H1140 (2006).

Lhermite, J.

D. Bouyge, A. Crunteanu, D. Sabourdy, P. Blondy, V. Couderc, J. Lhermite, L. Grossard, and A. Barthélémy, “Integration of micro-electro-mechanical deformable mirrors in doped fiber amplifiers,” Microsyst. Technol. 13(11-12), 1607–1613 (2007).
[CrossRef]

Li, L.

L. Li, M. Begbie, G. Brown, and D. Uttamchandani, “Design, simulation and characterization of a MEMS optical scanner,” J. Micromech. Microeng. 17(9), 1781–1787 (2007).
[CrossRef]

Lubeigt, W.

W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17(14), 12057–12069 (2009).
[CrossRef] [PubMed]

W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16(15), 10943–10955 (2008).
[CrossRef] [PubMed]

Marxer, C.

Y.-A. Peter, H. P. Herzig, E. Rochat, R. Dändliker, C. Marxer, and N. F. de Rooij, “Pulsed fiber laser using micro-electro-mechanical mirrors,” Opt. Eng. 38(4), 636–640 (1999).
[CrossRef]

Maute, M.

S. Schilt, K. Zogal, B. Kögel, P. Meissner, M. Maute, R. Protasio, and M.-C. Amman, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 100(2), 321–329 (2010).
[CrossRef]

Meissner, P.

S. Schilt, K. Zogal, B. Kögel, P. Meissner, M. Maute, R. Protasio, and M.-C. Amman, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 100(2), 321–329 (2010).
[CrossRef]

Nguyen, H. D.

D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004).
[CrossRef]

Pan, Y. T.

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

Patterson, P. R.

D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004).
[CrossRef]

Peter, Y.-A.

Y.-A. Peter, H. P. Herzig, E. Rochat, R. Dändliker, C. Marxer, and N. F. de Rooij, “Pulsed fiber laser using micro-electro-mechanical mirrors,” Opt. Eng. 38(4), 636–640 (1999).
[CrossRef]

Protasio, R.

S. Schilt, K. Zogal, B. Kögel, P. Meissner, M. Maute, R. Protasio, and M.-C. Amman, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 100(2), 321–329 (2010).
[CrossRef]

Rochat, E.

Y.-A. Peter, H. P. Herzig, E. Rochat, R. Dändliker, C. Marxer, and N. F. de Rooij, “Pulsed fiber laser using micro-electro-mechanical mirrors,” Opt. Eng. 38(4), 636–640 (1999).
[CrossRef]

Sabourdy, D.

D. Bouyge, A. Crunteanu, D. Sabourdy, P. Blondy, V. Couderc, J. Lhermite, L. Grossard, and A. Barthélémy, “Integration of micro-electro-mechanical deformable mirrors in doped fiber amplifiers,” Microsyst. Technol. 13(11-12), 1607–1613 (2007).
[CrossRef]

Sandner, T.

T. Sandner, J. U. Schmidt, H. Schenk, H. Lakner, M. Yang, A. Gatto, N. Kaiser, S. Braun, T. Foltyn, and A. Leson, “Highly reflective optical coatings for high power applications of micro scanning mirrors in the UV-VIS-NIR spectral region,” Proc. SPIE 6114, H1140–H1140 (2006).

Schenk, H.

T. Sandner, J. U. Schmidt, H. Schenk, H. Lakner, M. Yang, A. Gatto, N. Kaiser, S. Braun, T. Foltyn, and A. Leson, “Highly reflective optical coatings for high power applications of micro scanning mirrors in the UV-VIS-NIR spectral region,” Proc. SPIE 6114, H1140–H1140 (2006).

Schilt, S.

S. Schilt, K. Zogal, B. Kögel, P. Meissner, M. Maute, R. Protasio, and M.-C. Amman, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 100(2), 321–329 (2010).
[CrossRef]

Schmidt, J. U.

T. Sandner, J. U. Schmidt, H. Schenk, H. Lakner, M. Yang, A. Gatto, N. Kaiser, S. Braun, T. Foltyn, and A. Leson, “Highly reflective optical coatings for high power applications of micro scanning mirrors in the UV-VIS-NIR spectral region,” Proc. SPIE 6114, H1140–H1140 (2006).

Shenk, H.

S. Hsu, T. Klose, C. Drabe, and H. Shenk, “Fabrication and characterization of a dynamically flat high resolution micro-scanner,” J. Opt. A, Pure Appl. Opt. 10(4), 044005 (2008).
[CrossRef]

Toshiyoshi, H.

D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004).
[CrossRef]

Umegaki, S.

A. Inoue, T. Komikado, K. Kinoshita, J. Hayashi, and S. Umegaki, “Deformable Mirror for Mechanical Q-Switching of Laser-Diode-Pumped Microchip Laser,” Jpn. J. Appl. Phys. 46(42), L1016–L1018 (2007).
[CrossRef]

Uttamchandani, D.

L. Li, M. Begbie, G. Brown, and D. Uttamchandani, “Design, simulation and characterization of a MEMS optical scanner,” J. Micromech. Microeng. 17(9), 1781–1787 (2007).
[CrossRef]

Valentine, G.

W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16(15), 10943–10955 (2008).
[CrossRef] [PubMed]

Wu, M. C.

D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004).
[CrossRef]

Xie, H. K.

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

Yang, M.

T. Sandner, J. U. Schmidt, H. Schenk, H. Lakner, M. Yang, A. Gatto, N. Kaiser, S. Braun, T. Foltyn, and A. Leson, “Highly reflective optical coatings for high power applications of micro scanning mirrors in the UV-VIS-NIR spectral region,” Proc. SPIE 6114, H1140–H1140 (2006).

Zayhowski, J.

J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2-3), 255–267 (1999).
[CrossRef]

Zogal, K.

S. Schilt, K. Zogal, B. Kögel, P. Meissner, M. Maute, R. Protasio, and M.-C. Amman, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 100(2), 321–329 (2010).
[CrossRef]

Appl. Phys. B (1)

S. Schilt, K. Zogal, B. Kögel, P. Meissner, M. Maute, R. Protasio, and M.-C. Amman, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications,” Appl. Phys. B 100(2), 321–329 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE J. Sel. Top. Quantum Electron. 10(3), 505–513 (2004).
[CrossRef]

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

J. Micromech. Microeng. (1)

L. Li, M. Begbie, G. Brown, and D. Uttamchandani, “Design, simulation and characterization of a MEMS optical scanner,” J. Micromech. Microeng. 17(9), 1781–1787 (2007).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

S. Hsu, T. Klose, C. Drabe, and H. Shenk, “Fabrication and characterization of a dynamically flat high resolution micro-scanner,” J. Opt. A, Pure Appl. Opt. 10(4), 044005 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Inoue, T. Komikado, K. Kinoshita, J. Hayashi, and S. Umegaki, “Deformable Mirror for Mechanical Q-Switching of Laser-Diode-Pumped Microchip Laser,” Jpn. J. Appl. Phys. 46(42), L1016–L1018 (2007).
[CrossRef]

Microsyst. Technol. (1)

D. Bouyge, A. Crunteanu, D. Sabourdy, P. Blondy, V. Couderc, J. Lhermite, L. Grossard, and A. Barthélémy, “Integration of micro-electro-mechanical deformable mirrors in doped fiber amplifiers,” Microsyst. Technol. 13(11-12), 1607–1613 (2007).
[CrossRef]

Opt. Eng. (1)

Y.-A. Peter, H. P. Herzig, E. Rochat, R. Dändliker, C. Marxer, and N. F. de Rooij, “Pulsed fiber laser using micro-electro-mechanical mirrors,” Opt. Eng. 38(4), 636–640 (1999).
[CrossRef]

Opt. Express (3)

M. Fabert, A. Desfarges-Berthelemot, V. Kermène, A. Crunteanu, D. Bouyge, and P. Blondy, “Ytterbium-doped fibre laser Q-switched by a cantilever-type micro-mirror,” Opt. Express 16(26), 22064–22071 (2008).
[CrossRef] [PubMed]

W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16(15), 10943–10955 (2008).
[CrossRef] [PubMed]

W. Lubeigt, M. Griffith, L. Laycock, and D. Burns, “Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics,” Opt. Express 17(14), 12057–12069 (2009).
[CrossRef] [PubMed]

Opt. Mater. (1)

J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2-3), 255–267 (1999).
[CrossRef]

Proc. SPIE (1)

T. Sandner, J. U. Schmidt, H. Schenk, H. Lakner, M. Yang, A. Gatto, N. Kaiser, S. Braun, T. Foltyn, and A. Leson, “Highly reflective optical coatings for high power applications of micro scanning mirrors in the UV-VIS-NIR spectral region,” Proc. SPIE 6114, H1140–H1140 (2006).

Other (7)

MEMSCAP Inc, 12 Alexander Drive, Building 100, Research Triangle Park, NC 27709, USA, www.memscap.com .

Cutting Edge Optronics, 20 Point West Boulevard, St. Charles, MO 63301, USA, http://www.st.northropgrumman.com/ceolaser/ .

M. Fabert, A. Crunteanu, V. Kermène, A. Desfarges-Berthelemot, D. Bouyge, and P. Blondy, “8ns pulses from a compact fibre-laser Q-switched by MOEMS,” in Conference on Laser and Electro-Optics 2009, Technical Digest (CD) (Optical Society of America, 2009), paper CFB6.

O. Solgaard, Photonic Microsystems: Micro and Nanotechnology Applied to Optical Devices and Systems, (Springer, New York, 2009), Chap. 7.

A. Q. Liu, X. Zhang, J. Li, S. H. G. Teo, F. Lewis, and B. Borovic, Photonic MEMS Devices: Design, Fabrication and Control, (CRC Press, Boca Ranton, USA, 2009).

R. Cheung, Silicon Carbide Microelectromechanical systems for harsh environments (Imperial College Press, London, UK, 2006).

M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, Properties of advanced semiconductor materials: GaN, AIn, InN, BN, SiC, SiGe (John Wiley & Sons, New York, USA, 2001), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Microscope image of a 1mm 2D electrothermal MEMS mirror and (b) a 1mm 2D electrostatic MEMS micromirror

Fig. 2
Fig. 2

Beam deflection angle using a thermal micromirror as a function of applied voltage.

Fig. 3
Fig. 3

Thermally-induced curvature as function of the voltage applied to the electrothermal MEMS.

Fig. 4
Fig. 4

FEA model output revealing the two basic oscillatory modes of an electrostatic micromirror: (a) torsional mode (T-mode) and (b) flexing mode (F-mode)

Fig. 5
Fig. 5

Calculated angular sweep (blue line) of the MEMS micromirror operating in the F-mode at 10.3kHz. From the slope of the linear fit (in red) the angular deflection speed was measured at 3.105 deg.s−1.

Fig. 6
Fig. 6

Picture (a) and schematic (b) of the 2-mirror Nd:YLF laser cavity

Fig. 7
Fig. 7

Output power of the 2-mirror Nd:YLF laser featuring the electrothermal MEMS micromirror (N.B. the constant amplitude was due to the saturation of the optical detector).

Fig. 8
Fig. 8

Output power of the Nd:YLF laser as a function of time (during which the pump power is monotonically increased). (N.B. the maximum amplitude of the output power (between t = 6s and t = 13s) was due to the saturation of the optical detector).

Fig. 9
Fig. 9

Temporal control of the Nd:YLF laser while electrically driving the intra-cavity electrothermal MEMS mirror.

Fig. 10
Fig. 10

Schematic of the (a) 3-mirror Nd:YLF laser cavity and (b) the Nd:glass laser cavity.

Fig. 11
Fig. 11

(a) 430ns pulse recorded at f = 10.3kHz with an average power of 60mW and (b) shortest pulse recorded (220ns operating at 10.3kHz with an average power of 20mW)

Fig. 12
Fig. 12

Effects of tilting MEMS micromirror surface on the pulse intensity and pulse repetition frequency (PRF) with respect to the intra-cavity laser beam. The area enclosed by the arc is the angular range of the micromirror, and the red shaded area represents the range where the MEMS can be considered ‘active’ (i.e. where the laser is aligned).

Tables (1)

Tables Icon

Table 1 Characteristics of the measured resonant frequencies of the electrostatic micromirror

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ min = 8.1 τ r / ln ( G )

Metrics