Abstract

We report on a novel amplifier configuration concept for a 10 kW laser system using a zig-zag optical path based on a cryogenic Yb:YAG Total-Reflection Active-Mirror (TRAM) laser. The laser material is a compact composite ceramic, in which three Yb:YAG TRAMs are combined in series to increase the output power. Output powers of up to 214 W with a slope efficiency of 63% have been demonstrated for CW operation, even at a quite low pump intensity of less than 170 W/cm2. Further scaling could achieve output powers of more than 10 kW.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Harvilla and R. Brockmann, ““Latest advances in high power disk lasers,” Proc. SPIE 7578, 75780c (2010).
  2. V. Gapontsev, V. Fomin, and A. Yusim, “Recent progress in scaling high power fiber lasers at IPG Photonics,” presented at the 22nd Annual Solid State and Diode Laser Technology Review, Newton, Massachusetts USA, June 29-July 2, (2009).
  3. S. J. McNauht, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW Coherently Combined Slab MOPAs,” in Conference on Lasers and Electro-Optics, Technical Digest (Optical Society of America, 2009), paper CThA1.
  4. A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [CrossRef]
  5. H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34(21), 3439–3441 (2009).
    [CrossRef] [PubMed]
  6. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [CrossRef]
  7. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
    [CrossRef]
  8. D. C. Brown, “The Promise of Cryogenic Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [CrossRef]
  9. T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-Defect-Limited Operation of Diode-Pumped Yb:YAG Laser at Low Temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
    [CrossRef]
  10. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly Efficient Cryogenically Cooled Yb:YAG Laser,” Laser Phys. 20(5), 1079–1084 (2010).
    [CrossRef]
  11. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
    [CrossRef]
  12. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W Cryogenically Cooled Yb:YAG Laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
    [CrossRef]
  13. J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, ““2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
    [CrossRef]
  14. K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
    [CrossRef] [PubMed]
  15. W. Koechner, Solid State Laser Engineering, 6th ed., Springer Series in Optical Science (Springer, 2006).

2010

D. Harvilla and R. Brockmann, ““Latest advances in high power disk lasers,” Proc. SPIE 7578, 75780c (2010).

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly Efficient Cryogenically Cooled Yb:YAG Laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

2009

H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34(21), 3439–3441 (2009).
[CrossRef] [PubMed]

2008

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, ““2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
[CrossRef] [PubMed]

2007

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[CrossRef]

2005

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W Cryogenically Cooled Yb:YAG Laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

D. C. Brown, “The Promise of Cryogenic Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[CrossRef]

2004

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-Defect-Limited Operation of Diode-Pumped Yb:YAG Laser at Low Temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Abeeluck, A. K.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, ““2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W Cryogenically Cooled Yb:YAG Laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

Awtry, A. R.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, ““2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Brasseur, J. K.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, ““2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Brockmann, R.

D. Harvilla and R. Brockmann, ““Latest advances in high power disk lasers,” Proc. SPIE 7578, 75780c (2010).

Brown, D. C.

D. C. Brown, “The Promise of Cryogenic Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[CrossRef]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Cuchiara, M. H.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, ““2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Fan, T. Y.

K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
[CrossRef] [PubMed]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W Cryogenically Cooled Yb:YAG Laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

Fujita, M.

H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34(21), 3439–3441 (2009).
[CrossRef] [PubMed]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-Defect-Limited Operation of Diode-Pumped Yb:YAG Laser at Low Temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Furuse, H.

H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34(21), 3439–3441 (2009).
[CrossRef] [PubMed]

Giesen, A.

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[CrossRef]

Gopinath, J.

K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
[CrossRef] [PubMed]

Hampton, R. K.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, ““2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Harvilla, D.

D. Harvilla and R. Brockmann, ““Latest advances in high power disk lasers,” Proc. SPIE 7578, 75780c (2010).

Hong, K. H.

K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
[CrossRef] [PubMed]

Hybl, J.

K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
[CrossRef] [PubMed]

Ilday, F. Ö.

K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
[CrossRef] [PubMed]

Imasaki, K.

H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34(21), 3439–3441 (2009).
[CrossRef] [PubMed]

Ishii, S.

H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34(21), 3439–3441 (2009).
[CrossRef] [PubMed]

Izawa, Y.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-Defect-Limited Operation of Diode-Pumped Yb:YAG Laser at Low Temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Kan, H.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly Efficient Cryogenically Cooled Yb:YAG Laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

Kärtner, F. X.

K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
[CrossRef] [PubMed]

Kawanaka, J.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly Efficient Cryogenically Cooled Yb:YAG Laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34(21), 3439–3441 (2009).
[CrossRef] [PubMed]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-Defect-Limited Operation of Diode-Pumped Yb:YAG Laser at Low Temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Kawashima, T.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly Efficient Cryogenically Cooled Yb:YAG Laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

Meng, L. S.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, ““2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Miller, N. J.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, ““2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Miyanaga, N.

H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34(21), 3439–3441 (2009).
[CrossRef] [PubMed]

Moses, J.

K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
[CrossRef] [PubMed]

Neumann, D. K.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, ““2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W Cryogenically Cooled Yb:YAG Laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

Pearce, S. J.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly Efficient Cryogenically Cooled Yb:YAG Laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W Cryogenically Cooled Yb:YAG Laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

Saiki, T.

H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34(21), 3439–3441 (2009).
[CrossRef] [PubMed]

Shoji, T.

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-Defect-Limited Operation of Diode-Pumped Yb:YAG Laser at Low Temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Shortoff, K. E.

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, ““2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

Siddiqui, A.

K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
[CrossRef] [PubMed]

Speiser, J.

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[CrossRef]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Takeshita, K.

H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34(21), 3439–3441 (2009).
[CrossRef] [PubMed]

Takeuchi, Y.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly Efficient Cryogenically Cooled Yb:YAG Laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Tokita, S.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-Defect-Limited Operation of Diode-Pumped Yb:YAG Laser at Low Temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Yasuhara, R.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly Efficient Cryogenically Cooled Yb:YAG Laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

Yoshida, A.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly Efficient Cryogenically Cooled Yb:YAG Laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

Appl. Phys. B

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

IEEE J. Quantum Electron.

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “300-W Cryogenically Cooled Yb:YAG Laser,” IEEE J. Quantum Electron. 41(10), 1274–1277 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

D. C. Brown, “The Promise of Cryogenic Solid-State Lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[CrossRef]

J. Appl. Phys.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

T. Shoji, S. Tokita, J. Kawanaka, M. Fujita, and Y. Izawa, “Quantum-Defect-Limited Operation of Diode-Pumped Yb:YAG Laser at Low Temperature,” Jpn. J. Appl. Phys. 43(No. 4A), L496–L498 (2004).
[CrossRef]

Laser Phys.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly Efficient Cryogenically Cooled Yb:YAG Laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

Opt. Lett.

H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34(21), 3439–3441 (2009).
[CrossRef] [PubMed]

K. H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
[CrossRef] [PubMed]

Proc. SPIE

J. K. Brasseur, A. K. Abeeluck, A. R. Awtry, L. S. Meng, K. E. Shortoff, N. J. Miller, R. K. Hampton, M. H. Cuchiara, and D. K. Neumann, ““2.3-kW continuous operation cryogenic Yb:YAG laser,” Proc. SPIE 6952, 69520L, 69520L-8 (2008).
[CrossRef]

D. Harvilla and R. Brockmann, ““Latest advances in high power disk lasers,” Proc. SPIE 7578, 75780c (2010).

Other

V. Gapontsev, V. Fomin, and A. Yusim, “Recent progress in scaling high power fiber lasers at IPG Photonics,” presented at the 22nd Annual Solid State and Diode Laser Technology Review, Newton, Massachusetts USA, June 29-July 2, (2009).

S. J. McNauht, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW Coherently Combined Slab MOPAs,” in Conference on Lasers and Electro-Optics, Technical Digest (Optical Society of America, 2009), paper CThA1.

W. Koechner, Solid State Laser Engineering, 6th ed., Springer Series in Optical Science (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the zig-zag active-mirror sample.

Fig. 2
Fig. 2

Schematic of the ZiZa-AM power oscillator.

Fig. 3
Fig. 3

(a) Output powers of the Zig-Zag Active-Mirror laser as a function of absorbed diode pump power, and (b) the laser threshold power.

Fig. 4
Fig. 4

Schematic of the single-pass amplifier.

Fig. 5
Fig. 5

The small signal gain as a function of the absorbed pump power. The calculated blue line corresponds to the case when ASE suppressed and the gain is constant on Yb1 disk.

Fig. 6
Fig. 6

(a) Amplified beam profiles of near-field (NFP) and far-field (FFP) patterns at absorbed pump power of 400 W. Beam diameters (1/e 2) of NFP and FFP are about 5.0 mm and 180 μm, respectively. (b) M 2-fit data in x and y transverse dimensions. The solid curves are calculated results for M 2 = 1.0.

Fig. 7
Fig. 7

The degree of polarization (DOP) as a function of absorbed pump power.

Fig. 8
Fig. 8

Conceptual amplifier design for more than 10 kW output power. Cr:YAG is used as an absorber of spontaneous emission to avoid ASE effects.

Tables (1)

Tables Icon

Table 1 Specifications of thickness and absorption for designed and manufactured ZiZa-AM. The estimated temperature rise at an incident pump power of 15 kW and a pump beam diameter of 15 mm are also listed

Metrics