Photoacoustic microscopy (PAM) is dominantly sensitive to the endogenous optical absorption compared with the confocal microscopy which images with scattering photons. PAM has similar structure such as optical transportation system, the optical scanning, and light source with the laser scanning confocal microscopy (LSCM). In order to match the PAM with LSCM, a special design microcavity photoacoustic (PA) transducer with high sensitivity is developed to detect the photoacoustic signals induced by modulated continuous wave (CW) laser. By employing a microcavity PA transducer, a PAM can be integrated with LSCM. Thus a simultaneous multimodal imaging can be obtained with the same laser source and optical system. The lateral resolutions of the PAM and the LSCM are both tested to be better than 1.25μm. Then subcellular multimodal imaging can be achieved. Images from the two modes are corresponding with each other but functionally complementary. Combining PAM and LSCM provides more comprehensive information for the cytological test. This technique is demonstrated for imaging red-blood cells and meristematic cells.

© 2011 OSA

Full Article  |  PDF Article
Related Articles
Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography

Shuliang Jiao, Zhixing Xie, Hao F. Zhang, and Carmen A. Puliafito
Opt. Lett. 34(19) 2961-2963 (2009)

Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo

Chi Zhang, Konstantin Maslov, and Lihong V. Wang
Opt. Lett. 35(19) 3195-3197 (2010)

Multimodal characterization of compositional, structural and functional features of human atherosclerotic plaques

Yang Sun, Abhijit J. Chaudhari, Matthew Lam, Hongtao Xie, Diego R. Yankelevich, Jennifer Phipps, Jing Liu, Michael C. Fishbein, Jonathan M. Cannata, K. Kirk Shung, and Laura Marcu
Biomed. Opt. Express 2(8) 2288-2298 (2011)


  • View by:
  • |
  • |
  • |

  1. Y. Yuan, S. Yang, and D. Xing, “Preclinical photoacoustic imaging endoscope based on acousto-optic coaxial system using ring transducer array,” Opt. Lett. 35(13Issue 13), 2266–2268 (2010).
    [Crossref] [PubMed]
  2. K. Homan, S. Kim, Y.-S. Chen, B. Wang, S. Mallidi, and S. Emelianov, “Prospects of molecular photoacoustic imaging at 1064 nm wavelength,” Opt. Lett. 35(15), 2663–2665 (2010).
    [Crossref] [PubMed]
  3. A. de la Zerda, Y. M. Paulus, R. Teed, S. Bodapati, Y. Dollberg, B. T. Khuri-Yakub, M. S. Blumenkranz, D. M. Moshfeghi, and S. S. Gambhir, “Photoacoustic ocular imaging,” Opt. Lett. 35(3), 270–272 (2010).
    [Crossref] [PubMed]
  4. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
    [Crossref] [PubMed]
  5. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010).
    [Crossref] [PubMed]
  6. H. F. Zhang, J. Wang, Q. Wei, T. Liu, S. Jiao, and C. A. Puliafito, “Collecting back-reflected photons in photoacoustic microscopy,” Opt. Express 18(2), 1278–1282 (2010).
    [Crossref] [PubMed]
  7. Y. Wei, Z. Tang, H. Zhang, Y. He, and H. Liu, “Photoacoustic tomography imaging using a 4f acoustic lens and peak-hold technology,” Opt. Express 16(8), 5314–5319 (2008).
    [Crossref] [PubMed]
  8. Z. Chen, Z. Tang, and W. Wan, “Photoacoustic tomography imaging based on a 4f acoustic lens imaging system,” Opt. Express 15(8), 4966–4976 (2007).
    [Crossref] [PubMed]
  9. A. Rosencwaig, Photoacoustics And Photoacoustic Spectroscopy pp:33–34 (1980).

2010 (5)

2009 (1)

2008 (1)

2007 (1)

Blumenkranz, M. S.

Bodapati, S.

Chen, Y.-S.

Chen, Z.

de la Zerda, A.

Dollberg, Y.

Emelianov, S.

Gambhir, S. S.

He, Y.

Homan, K.

Jiao, S.

Khuri-Yakub, B. T.

Kim, S.

Liu, H.

Liu, T.

Mallidi, S.

Maslov, K.

Moshfeghi, D. M.

Paulus, Y. M.

Puliafito, C. A.

Tang, Z.

Teed, R.

Wan, W.

Wang, B.

Wang, J.

Wang, L. V.

Wei, Q.

Wei, Y.

Xie, Z.

Xing, D.

Yang, S.

Yuan, Y.

Zhang, C.

Zhang, H.

Zhang, H. F.

Opt. Express (3)

Opt. Lett. (5)

Other (1)

A. Rosencwaig, Photoacoustics And Photoacoustic Spectroscopy pp:33–34 (1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

Figures (6)

Fig. 1
Fig. 1

Schematic of microcavity photoacoustic transducer.

Fig. 2
Fig. 2

Schematic of multimodal cellular imaging system with integrated PAM and LSCM setup.

Fig. 3
Fig. 3

(a) image of continue wave photoacoustic signal in oscillograph. (b) image of noise in oscillograph. (c) photoacoustic signal amplitude with different input power.

Fig. 4
Fig. 4

Images of resolution test target RTA-07 (a) image of optical microscopy. (b) a close-up view of group 25. (c) PA signals at the cross sections highlighted by a-a in (b). (d) PAM image using microcavity PA transducer. (e) Image of LSCM.

Fig. 5
Fig. 5

Images of iron deficiency anemia cells:(a) image from microcavity PA transducer. (d) image from laser scanning confocal microscopy.

Fig. 6
Fig. 6

Images of meristematic cell (a) image of optical microscope .(b) PAM image using microcavity PA transducer. (c) laser scanning confocal microscope image of meristematic cell. CN: cell nucleus.