Abstract

We demonstrate a micro-resonator based on a channel waveguide terminated with metallic mirrors side coupled to a bus waveguide. Transmission through such a resonant structure implemented in a silicon-on-insulator platform is investigated theoretically and demonstrated experimentally. The resonator is 13.4 μm long, exhibits an unloaded Q-factor of ∼2100, and a free spectral range of 21 nm around the wavelength of 1.55 μm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
    [Crossref] [PubMed]
  2. S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
    [Crossref]
  3. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33(11), 1261–1263 (2008).
    [Crossref] [PubMed]
  4. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
    [Crossref]
  5. L. Zhang and A. E. Willner, “Microresonators for Communication and Signal Processing Applications”, in Photonic Microresonator Research and Applications, I. Chremmos, O. Schwelb, and N. Uzunoglu, eds, (Springer2010), pp. 485–505.
    [Crossref]
  6. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  7. L. Pavesi and D. J. Lockwood, eds., Silicon Photonics, (Springer2004), pp. 51–84.
  8. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
    [Crossref]
  9. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
    [Crossref]
  10. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31(3), 341–343 (2006).
    [Crossref] [PubMed]
  11. P. Koonath, T. Indukuri, and B. Jalali, “Add-drop filters utilizing vertically coupled microdisk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
    [Crossref]
  12. A. Morand, Y. Zhang, B. Martin, K. Phan Huy, D. Amans, P. Benech, J. Verbert, E. Hadji, and J. M. Fédéli, “Ultra-compact microdisk resonator filters on SOI substrate,” Opt. Express 14(26), 12814–12821 (2006).
    [Crossref] [PubMed]
  13. H.-C. Kim, K. Ikeda, and Y. Fainman, “Tunable transmission resonant filter and modulator with vertical gratings,” J. Lightwave Technol. 25(5), 1147–1151 (2007).
    [Crossref]
  14. H.-C. Kim, K. Ikeda, and Y. Fainman, “Resonant waveguide device with vertical gratings,” Opt. Lett. 32(5), 539–541 (2007).
    [Crossref] [PubMed]
  15. K. Vahala, Optical Microcavities, (World Scientific Publishing2004).
    [Crossref]
  16. J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators. Theory, Fabrication, and Applications, (Springer-Verlag2008).
  17. H. A. Haus, Waves and Fields in Optoelectronics, (Prentice Hall1984), ch. 8.3, pp. 226–8 and 243.
  18. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light, (Princeton University Press1995).
  19. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley & Sons1995), ch. 3.
  20. S. Wolff, A. R. Giehl, M. Renno, and H. Fouckhardt, “Metallic waveguide mirrors in polymer film waveguides,” Appl. Phys. B 73(5–6), 623–627 (2001).
    [Crossref]
  21. Y. Shibata, T. Suzuki, and H. Tsuda, “Design and Evaluation of an N:N Optical Coupler Using an Integrated Waveguide Mirror,” Opt. Rev. 11(3), 182–187 (2004).
    [Crossref]
  22. S. Zamek, A. Mizrahi, L. Feng, A. Simic, and Y. Fainman, “On-chip waveguide resonator with metallic mirrors,” Opt. Lett. 35(4), 598–600 (2010).
    [Crossref] [PubMed]
  23. A. Yariv, Optical Electronics, 3d Ed. (Holt, Rinehart and Winston1985), ch. 13.7, p. 432.
  24. R. Kazarinov, C. Henry, and N. Olsson, “Narrow Band Resonant Optical Reflectors and Resonant Optical Transformers for Laser Stabilization and Wavelength Division Multiplexing,” IEEE J. Quantum Electron. 23(9), 1419–1425 (1987).
    [Crossref]
  25. H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feedback Resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
    [Crossref]
  26. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
    [Crossref]
  27. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(5 5 Pt B), 7389–7404 (2000).
    [Crossref] [PubMed]
  28. M. Lohmeyer, “Mode expansion modeling of rectangular integrated optical microresonators,” Opt. Quantum Electron. 34(5–6), 541–557 (2002).
    [Crossref]
  29. M. Hammer, D. Yudistira, and R. Stoffer, “Modeling of grating assisted standing wave microresonators for filter applications in integrated optics,” Opt. Quantum Electron. 36(1–3), 25–42 (2004).
    [Crossref]
  30. E. D. Palik, ed., Handbook of Optical Constants of Solids, (Academic1985), p. 294.
  31. A. B. Buckman, Guided Wave Photonics, (Saunder College Publishing1992), pp. 149–154.
  32. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83(10), 1915 (2003).
    [Crossref]
  33. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
    [Crossref]
  34. Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
    [Crossref]
  35. K. Preston and M. Lipson, “Slot waveguides with polycrystalline silicon for electrical injection,” Opt. Express 17(3), 1527–1534 (2009).
    [Crossref] [PubMed]

2010 (3)

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

S. Zamek, A. Mizrahi, L. Feng, A. Simic, and Y. Fainman, “On-chip waveguide resonator with metallic mirrors,” Opt. Lett. 35(4), 598–600 (2010).
[Crossref] [PubMed]

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref]

2009 (1)

2008 (2)

2007 (4)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[Crossref]

H.-C. Kim, K. Ikeda, and Y. Fainman, “Tunable transmission resonant filter and modulator with vertical gratings,” J. Lightwave Technol. 25(5), 1147–1151 (2007).
[Crossref]

H.-C. Kim, K. Ikeda, and Y. Fainman, “Resonant waveguide device with vertical gratings,” Opt. Lett. 32(5), 539–541 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (1)

P. Koonath, T. Indukuri, and B. Jalali, “Add-drop filters utilizing vertically coupled microdisk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
[Crossref]

2004 (3)

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Y. Shibata, T. Suzuki, and H. Tsuda, “Design and Evaluation of an N:N Optical Coupler Using an Integrated Waveguide Mirror,” Opt. Rev. 11(3), 182–187 (2004).
[Crossref]

M. Hammer, D. Yudistira, and R. Stoffer, “Modeling of grating assisted standing wave microresonators for filter applications in integrated optics,” Opt. Quantum Electron. 36(1–3), 25–42 (2004).
[Crossref]

2003 (1)

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83(10), 1915 (2003).
[Crossref]

2002 (1)

M. Lohmeyer, “Mode expansion modeling of rectangular integrated optical microresonators,” Opt. Quantum Electron. 34(5–6), 541–557 (2002).
[Crossref]

2001 (1)

S. Wolff, A. R. Giehl, M. Renno, and H. Fouckhardt, “Metallic waveguide mirrors in polymer film waveguides,” Appl. Phys. B 73(5–6), 623–627 (2001).
[Crossref]

2000 (1)

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(5 5 Pt B), 7389–7404 (2000).
[Crossref] [PubMed]

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[Crossref]

1998 (2)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

1992 (1)

H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feedback Resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
[Crossref]

1987 (1)

R. Kazarinov, C. Henry, and N. Olsson, “Narrow Band Resonant Optical Reflectors and Resonant Optical Transformers for Laser Stabilization and Wavelength Division Multiplexing,” IEEE J. Quantum Electron. 23(9), 1419–1425 (1987).
[Crossref]

Amans, D.

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Baets, R.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83(10), 1915 (2003).
[Crossref]

Beckx, S.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Benech, P.

Bienstman, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Bogaerts, W.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Bondarenko, O.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Buckman, A. B.

A. B. Buckman, Guided Wave Photonics, (Saunder College Publishing1992), pp. 149–154.

Chen, J.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83(10), 1915 (2003).
[Crossref]

Cho, A. Y.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83(10), 1915 (2003).
[Crossref]

Chu, S. T.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley & Sons1995), ch. 3.

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley & Sons1995), ch. 3.

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Dong, C.-H.

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref]

Dumon, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Fainman, Y.

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[Crossref]

Fédéli, J. M.

Feng, L.

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Fouckhardt, H.

S. Wolff, A. R. Giehl, M. Renno, and H. Fouckhardt, “Metallic waveguide mirrors in polymer film waveguides,” Appl. Phys. B 73(5–6), 623–627 (2001).
[Crossref]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Gayral, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Gérard, J. M.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Giehl, A. R.

S. Wolff, A. R. Giehl, M. Renno, and H. Fouckhardt, “Metallic waveguide mirrors in polymer film waveguides,” Appl. Phys. B 73(5–6), 623–627 (2001).
[Crossref]

Gmachl, C.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83(10), 1915 (2003).
[Crossref]

Gong, Q.

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref]

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Grover, R.

J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators. Theory, Fabrication, and Applications, (Springer-Verlag2008).

Hadji, E.

Hammer, M.

M. Hammer, D. Yudistira, and R. Stoffer, “Modeling of grating assisted standing wave microresonators for filter applications in integrated optics,” Opt. Quantum Electron. 36(1–3), 25–42 (2004).
[Crossref]

Han, Z.-F.

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[Crossref]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feedback Resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
[Crossref]

H. A. Haus, Waves and Fields in Optoelectronics, (Prentice Hall1984), ch. 8.3, pp. 226–8 and 243.

Heebner, J.

J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators. Theory, Fabrication, and Applications, (Springer-Verlag2008).

Henry, C.

R. Kazarinov, C. Henry, and N. Olsson, “Narrow Band Resonant Optical Reflectors and Resonant Optical Transformers for Laser Stabilization and Wavelength Division Multiplexing,” IEEE J. Quantum Electron. 23(9), 1419–1425 (1987).
[Crossref]

Ibrahim, T.

J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators. Theory, Fabrication, and Applications, (Springer-Verlag2008).

Ikeda, K.

Indukuri, T.

P. Koonath, T. Indukuri, and B. Jalali, “Add-drop filters utilizing vertically coupled microdisk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
[Crossref]

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Jalali, B.

P. Koonath, T. Indukuri, and B. Jalali, “Add-drop filters utilizing vertically coupled microdisk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
[Crossref]

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light, (Princeton University Press1995).

Kazarinov, R.

R. Kazarinov, C. Henry, and N. Olsson, “Narrow Band Resonant Optical Reflectors and Resonant Optical Transformers for Laser Stabilization and Wavelength Division Multiplexing,” IEEE J. Quantum Electron. 23(9), 1419–1425 (1987).
[Crossref]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[Crossref]

Kim, H.-C.

Kimerling, L. C.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Koonath, P.

P. Koonath, T. Indukuri, and B. Jalali, “Add-drop filters utilizing vertically coupled microdisk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
[Crossref]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Lai, Y.

H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feedback Resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
[Crossref]

Lee, R. K.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(5 5 Pt B), 7389–7404 (2000).
[Crossref] [PubMed]

Legrand, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Li, B.-B.

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref]

Li, Y.

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref]

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(5 5 Pt B), 7389–7404 (2000).
[Crossref] [PubMed]

Lipson, M.

Little, B. E.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Lohmeyer, M.

M. Lohmeyer, “Mode expansion modeling of rectangular integrated optical microresonators,” Opt. Quantum Electron. 34(5–6), 541–557 (2002).
[Crossref]

Lomakin, V.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33(11), 1261–1263 (2008).
[Crossref] [PubMed]

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[Crossref]

Martin, B.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light, (Princeton University Press1995).

Mizrahi, A.

Morand, A.

Nezhad, M. P.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33(11), 1261–1263 (2008).
[Crossref] [PubMed]

Olsson, N.

R. Kazarinov, C. Henry, and N. Olsson, “Narrow Band Resonant Optical Reflectors and Resonant Optical Transformers for Laser Stabilization and Wavelength Division Multiplexing,” IEEE J. Quantum Electron. 23(9), 1419–1425 (1987).
[Crossref]

Painter, O.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83(10), 1915 (2003).
[Crossref]

Phan Huy, K.

Preble, S. F.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[Crossref]

Preston, K.

Renno, M.

S. Wolff, A. R. Giehl, M. Renno, and H. Fouckhardt, “Metallic waveguide mirrors in polymer film waveguides,” Appl. Phys. B 73(5–6), 623–627 (2001).
[Crossref]

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Shibata, Y.

Y. Shibata, T. Suzuki, and H. Tsuda, “Design and Evaluation of an N:N Optical Coupler Using an Integrated Waveguide Mirror,” Opt. Rev. 11(3), 182–187 (2004).
[Crossref]

Simic, A.

S. Zamek, A. Mizrahi, L. Feng, A. Simic, and Y. Fainman, “On-chip waveguide resonator with metallic mirrors,” Opt. Lett. 35(4), 598–600 (2010).
[Crossref] [PubMed]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Slutsky, B.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Slutsky, B. A.

Srinivasan, K.

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83(10), 1915 (2003).
[Crossref]

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Stoffer, R.

M. Hammer, D. Yudistira, and R. Stoffer, “Modeling of grating assisted standing wave microresonators for filter applications in integrated optics,” Opt. Quantum Electron. 36(1–3), 25–42 (2004).
[Crossref]

Suzuki, T.

Y. Shibata, T. Suzuki, and H. Tsuda, “Design and Evaluation of an N:N Optical Coupler Using an Integrated Waveguide Mirror,” Opt. Rev. 11(3), 182–187 (2004).
[Crossref]

Taillaert, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Thierry-Mieg, V.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

Tsuda, H.

Y. Shibata, T. Suzuki, and H. Tsuda, “Design and Evaluation of an N:N Optical Coupler Using an Integrated Waveguide Mirror,” Opt. Rev. 11(3), 182–187 (2004).
[Crossref]

Vahala, K.

K. Vahala, Optical Microcavities, (World Scientific Publishing2004).
[Crossref]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Van Campenhout, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Van Thourhout, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Verbert, J.

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[Crossref]

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Willner, A. E.

L. Zhang and A. E. Willner, “Microresonators for Communication and Signal Processing Applications”, in Photonic Microresonator Research and Applications, I. Chremmos, O. Schwelb, and N. Uzunoglu, eds, (Springer2010), pp. 485–505.
[Crossref]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light, (Princeton University Press1995).

Wolff, S.

S. Wolff, A. R. Giehl, M. Renno, and H. Fouckhardt, “Metallic waveguide mirrors in polymer film waveguides,” Appl. Phys. B 73(5–6), 623–627 (2001).
[Crossref]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

Xiao, Y.-F.

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref]

Xu, Q.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[Crossref]

Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31(3), 341–343 (2006).
[Crossref] [PubMed]

Xu, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(5 5 Pt B), 7389–7404 (2000).
[Crossref] [PubMed]

Yariv, A.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(5 5 Pt B), 7389–7404 (2000).
[Crossref] [PubMed]

A. Yariv, Optical Electronics, 3d Ed. (Holt, Rinehart and Winston1985), ch. 13.7, p. 432.

Yudistira, D.

M. Hammer, D. Yudistira, and R. Stoffer, “Modeling of grating assisted standing wave microresonators for filter applications in integrated optics,” Opt. Quantum Electron. 36(1–3), 25–42 (2004).
[Crossref]

Zamek, S.

Zhang, L.

L. Zhang and A. E. Willner, “Microresonators for Communication and Signal Processing Applications”, in Photonic Microresonator Research and Applications, I. Chremmos, O. Schwelb, and N. Uzunoglu, eds, (Springer2010), pp. 485–505.
[Crossref]

Zhang, Y.

Zou, C.-L.

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref]

Appl. Phys. B (1)

S. Wolff, A. R. Giehl, M. Renno, and H. Fouckhardt, “Metallic waveguide mirrors in polymer film waveguides,” Appl. Phys. B 73(5–6), 623–627 (2001).
[Crossref]

Appl. Phys. Lett. (2)

P. Koonath, T. Indukuri, and B. Jalali, “Add-drop filters utilizing vertically coupled microdisk resonators in silicon,” Appl. Phys. Lett. 86(9), 091102 (2005).
[Crossref]

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83(10), 1915 (2003).
[Crossref]

IEEE J. Quantum Electron. (3)

R. Kazarinov, C. Henry, and N. Olsson, “Narrow Band Resonant Optical Reflectors and Resonant Optical Transformers for Laser Stabilization and Wavelength Division Multiplexing,” IEEE J. Quantum Electron. 23(9), 1419–1425 (1987).
[Crossref]

H. A. Haus and Y. Lai, “Theory of Cascaded Quarter Wave Shifted Distributed Feedback Resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
[Crossref]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (2)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (3)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Opt. Quantum Electron. (2)

M. Lohmeyer, “Mode expansion modeling of rectangular integrated optical microresonators,” Opt. Quantum Electron. 34(5–6), 541–557 (2002).
[Crossref]

M. Hammer, D. Yudistira, and R. Stoffer, “Modeling of grating assisted standing wave microresonators for filter applications in integrated optics,” Opt. Quantum Electron. 36(1–3), 25–42 (2004).
[Crossref]

Opt. Rev. (1)

Y. Shibata, T. Suzuki, and H. Tsuda, “Design and Evaluation of an N:N Optical Coupler Using an Integrated Waveguide Mirror,” Opt. Rev. 11(3), 182–187 (2004).
[Crossref]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(5 5 Pt B), 7389–7404 (2000).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Y.-F. Xiao, C.-L. Zou, B.-B. Li, Y. Li, C.-H. Dong, Z.-F. Han, and Q. Gong, “High-Q Exterior Whispering-Gallery Modes in a Metal-Coated Microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
[Crossref]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Other (10)

A. Yariv, Optical Electronics, 3d Ed. (Holt, Rinehart and Winston1985), ch. 13.7, p. 432.

E. D. Palik, ed., Handbook of Optical Constants of Solids, (Academic1985), p. 294.

A. B. Buckman, Guided Wave Photonics, (Saunder College Publishing1992), pp. 149–154.

K. Vahala, Optical Microcavities, (World Scientific Publishing2004).
[Crossref]

J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators. Theory, Fabrication, and Applications, (Springer-Verlag2008).

H. A. Haus, Waves and Fields in Optoelectronics, (Prentice Hall1984), ch. 8.3, pp. 226–8 and 243.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light, (Princeton University Press1995).

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, (Wiley & Sons1995), ch. 3.

L. Pavesi and D. J. Lockwood, eds., Silicon Photonics, (Springer2004), pp. 51–84.

L. Zhang and A. E. Willner, “Microresonators for Communication and Signal Processing Applications”, in Photonic Microresonator Research and Applications, I. Chremmos, O. Schwelb, and N. Uzunoglu, eds, (Springer2010), pp. 485–505.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the studied device. (b) Illustration of the formalism used to construct the analytical model.

Fig 2
Fig 2

Confirmation of the model. (a) Q-factors as a function of normalized length of the resonator L/λ calculated from Eqs 4 and 5. Q-factor associated with the external coupling (QC), mirror losses (Q0), and the total Q-factor (QT) are shown by broken blue, dashed black, and solid black correspondingly. The black cross-marks show FEM simulation results of the coupled resonator. (b–d) Electric field |Ez| distribution as obtained from FEM simulations for L/λ=0.22, 1.33, and 3.54 (where L=Lr=Lc). All simulation used TE polarization with the following parameters: mirror reflectivity R=0.98, normalized coupling coefficient κλ=0.114, normalized separation distance between the resonator and the bus waveguide G/λ=0.26, and normalized thickness of the waveguides d/λ=0.13.

Fig. 3
Fig. 3

Theoretical investigation of the micro-resonator. (a) Schematic of an Au mirror inserted into a Si waveguide. (b) Mirror’s reflectance, R, (solid black) and the ratio of scattering loss to the total loss (broken blue) as a function of guide’s width, W. An inset shows the considered cross-section of the waveguide. The shaded area corresponds to W below 150nm, for which the results are inaccurate due to the high numerical error of FEM, associated with low mode confinement. (c) Effective and group index, ne and ng, as a function of waveguide’s width, W. (d) Coupling coefficient, κ, as a function of the gap, G, between the guides, for the geometry shown in the inset. All results pertain to TE-like mode and a wavelength of λ = 1.55µm.

Fig. 4
Fig. 4

Conceptual illustration of the fabrication process. The two panes show two different cross-sections of the device (XY in the upper pane and ZY in the lower pane, as shown). The dimensions are not up to scale.

Fig. 5
Fig. 5

Experimental results. (a) Micrograph obtained with a scanning electron microscope (SEM) of the fabricated device right after the lift-off and prior to the deposition of top cladding with PECVD. The device is tilted at 45 degrees with respect to the imaging axis. (b) Experimental (red dots) and simulated (solid black) transmission spectra of TE-like mode of the fabricated device in dB.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

t = ( 1 e 2 i β L R R ) cos ( κ L c ) exp ( i β L r ) 1 cos 2 ( κ L c ) exp ( 2 i β L r ) R
| t ( ω ) | 2 cos 2 ( κ L c ) ( R 1 1 ) 2 + ( 2 L r Δ ω / v g ) 2 ( R 1 cos 2 ( κ L c ) ) 2 + ( 2 L r Δ ω / v g ) 2
| t ( ω ) | 2 = ( Γ 0 ) 2 + ( Δ ω ) 2 ( Γ 0 + Γ C ) 2 + ( Δ ω ) 2
Q 0 = ω 2 Γ 0 = k 0 n g L r R 1 1 ,
Q C = ω 2 Γ c = k 0 n g L r sin 2 ( κ L c )
E R = [ 1 + R 1 R 1 R cos 2 ( κ L c ) 1 + R cos 2 ( κ L c ) ] 2

Metrics