Abstract

This investigation elucidates for the first time electrically controllable random lasers below the threshold voltage in dye-doped liquid crystal (DDLC) cells with and without adding an azo-dye. Experimental results show that the lasing intensities and the energy thresholds of the random lasers can be decreased and increased, respectively, by increasing the applied voltage below the Fréedericksz transition threshold. The below-threshold-electric-controllability of the random lasers is attributable to the effective decrease of the spatial fluctuation of the orientational order and thus of the dielectric tensor of LCs by increasing the electric-field-aligned order of LCs below the threshold, thereby increasing the diffusion constant and decreasing the scattering strength of the fluorescence photons in their recurrent multiple scattering. This can result in the decrease in the lasing intensity of the random lasers and the increase in their energy thresholds. Furthermore, the addition of an azo-dye in DDLC cell can induce the range of the working voltage below the threshold for the control of the random laser to reduce.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
    [CrossRef]
  2. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [CrossRef]
  3. H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
    [CrossRef]
  4. D. S. Wiersma, “The smallest random laser,” Nature 406(6792), 132–135 (2000).
    [CrossRef] [PubMed]
  5. D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
    [CrossRef] [PubMed]
  6. V. M. Apalkov, M. E. Raikh, and B. Shapiro, “Random resonators and prelocalized modes in disordered dielectric films,” Phys. Rev. Lett. 89(1), 016802 (2002).
    [CrossRef] [PubMed]
  7. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
    [CrossRef]
  8. Q. H. Song, L. Wang, S. M. Xiao, X. C. Zhou, L. Y. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
    [CrossRef]
  9. S. V. Frolov, Z. V. Varderny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999).
    [CrossRef]
  10. D. S. Wiersma, M. Colocci, R. Righini, and F. Aliev, “Temperature-controlled light diffusion in random media,” Phys. Rev. B 64(14), 144208 (2001).
    [CrossRef]
  11. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
    [CrossRef]
  12. G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006).
    [CrossRef] [PubMed]
  13. S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009).
    [CrossRef] [PubMed]
  14. Q. H. Song, S. M. Xiao, X. C. Zhou, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity,” Opt. Lett. 32(4), 373–375 (2007).
    [CrossRef] [PubMed]
  15. S. Ferjani, V. Barna, A. De Luca, C. Versace, and G. Strangi, “Random lasing in freely suspended dye-doped nematic liquid crystals,” Opt. Lett. 33(6), 557–559 (2008).
    [CrossRef] [PubMed]
  16. Q. H. Song, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Lett. 34(3), 298–300 (2009).
    [CrossRef] [PubMed]
  17. S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93(26), 263901 (2004).
    [CrossRef]
  18. Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
    [CrossRef]
  19. S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, and G. Strangi, “Statistical analysis of random lasing emission properties in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 011707 (2008).
    [CrossRef] [PubMed]
  20. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [CrossRef]
  21. C.-R. Lee, S.-H. Lin, C.-H. Guo, S.-H. Chang, T.-S. Mo, and S.-C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express 18(3), 2406–2412 (2010).
    [CrossRef] [PubMed]
  22. C.-R. Lee, J.-D. Lin, B.-Y. Huang, T.-S. Mo, and S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010).
    [CrossRef] [PubMed]
  23. M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985).
    [CrossRef] [PubMed]
  24. E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56(14), 1471–1474 (1986).
    [CrossRef] [PubMed]
  25. M. P. van Albada, M. B. van der Mark, and A. Lagendijk, “Observation of weak localization of light in a finite slab: anisotropy effects and light path classification,” Phys. Rev. Lett. 58(4), 361–364 (1987).
    [CrossRef] [PubMed]
  26. P. C. de Oliveira, A. E. Perkins, and N. M. Lawandy, “Coherent backscattering from high-gain scattering media,” Opt. Lett. 21(20), 1685–1687 (1996).
    [CrossRef] [PubMed]
  27. D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Handbook of Liquid Crystals (Wiley-VCH, Weinheim, 1998), Chap. 9.

2010 (2)

C.-R. Lee, S.-H. Lin, C.-H. Guo, S.-H. Chang, T.-S. Mo, and S.-C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express 18(3), 2406–2412 (2010).
[CrossRef] [PubMed]

C.-R. Lee, J.-D. Lin, B.-Y. Huang, T.-S. Mo, and S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010).
[CrossRef] [PubMed]

2009 (2)

S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009).
[CrossRef] [PubMed]

Q. H. Song, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Lett. 34(3), 298–300 (2009).
[CrossRef] [PubMed]

2008 (3)

S. Ferjani, V. Barna, A. De Luca, C. Versace, and G. Strangi, “Random lasing in freely suspended dye-doped nematic liquid crystals,” Opt. Lett. 33(6), 557–559 (2008).
[CrossRef] [PubMed]

S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, and G. Strangi, “Statistical analysis of random lasing emission properties in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 011707 (2008).
[CrossRef] [PubMed]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

2007 (1)

Q. H. Song, S. M. Xiao, X. C. Zhou, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity,” Opt. Lett. 32(4), 373–375 (2007).
[CrossRef] [PubMed]

2006 (2)

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006).
[CrossRef] [PubMed]

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[CrossRef]

2005 (2)

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[CrossRef]

Q. H. Song, L. Wang, S. M. Xiao, X. C. Zhou, L. Y. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
[CrossRef]

2004 (2)

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[CrossRef]

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93(26), 263901 (2004).
[CrossRef]

2002 (1)

V. M. Apalkov, M. E. Raikh, and B. Shapiro, “Random resonators and prelocalized modes in disordered dielectric films,” Phys. Rev. Lett. 89(1), 016802 (2002).
[CrossRef] [PubMed]

2001 (2)

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[CrossRef] [PubMed]

D. S. Wiersma, M. Colocci, R. Righini, and F. Aliev, “Temperature-controlled light diffusion in random media,” Phys. Rev. B 64(14), 144208 (2001).
[CrossRef]

2000 (2)

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[CrossRef]

D. S. Wiersma, “The smallest random laser,” Nature 406(6792), 132–135 (2000).
[CrossRef] [PubMed]

1999 (2)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

S. V. Frolov, Z. V. Varderny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999).
[CrossRef]

1996 (1)

P. C. de Oliveira, A. E. Perkins, and N. M. Lawandy, “Coherent backscattering from high-gain scattering media,” Opt. Lett. 21(20), 1685–1687 (1996).
[CrossRef] [PubMed]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

1987 (1)

M. P. van Albada, M. B. van der Mark, and A. Lagendijk, “Observation of weak localization of light in a finite slab: anisotropy effects and light path classification,” Phys. Rev. Lett. 58(4), 361–364 (1987).
[CrossRef] [PubMed]

1986 (1)

E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56(14), 1471–1474 (1986).
[CrossRef] [PubMed]

1985 (1)

M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985).
[CrossRef] [PubMed]

Akkermans, E.

E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56(14), 1471–1474 (1986).
[CrossRef] [PubMed]

Aliev, F.

D. S. Wiersma, M. Colocci, R. Righini, and F. Aliev, “Temperature-controlled light diffusion in random media,” Phys. Rev. B 64(14), 144208 (2001).
[CrossRef]

Apalkov, V. M.

V. M. Apalkov, M. E. Raikh, and B. Shapiro, “Random resonators and prelocalized modes in disordered dielectric films,” Phys. Rev. Lett. 89(1), 016802 (2002).
[CrossRef] [PubMed]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Barna, V.

S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009).
[CrossRef] [PubMed]

S. Ferjani, V. Barna, A. De Luca, C. Versace, and G. Strangi, “Random lasing in freely suspended dye-doped nematic liquid crystals,” Opt. Lett. 33(6), 557–559 (2008).
[CrossRef] [PubMed]

S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, and G. Strangi, “Statistical analysis of random lasing emission properties in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 011707 (2008).
[CrossRef] [PubMed]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006).
[CrossRef] [PubMed]

Bartolino, R.

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006).
[CrossRef] [PubMed]

Baughman, R. H.

S. V. Frolov, Z. V. Varderny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999).
[CrossRef]

Cao, H.

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Cavalieri, S.

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93(26), 263901 (2004).
[CrossRef]

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[CrossRef] [PubMed]

Chang, R. P. H.

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Chang, S.-H.

C.-R. Lee, S.-H. Lin, C.-H. Guo, S.-H. Chang, T.-S. Mo, and S.-C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express 18(3), 2406–2412 (2010).
[CrossRef] [PubMed]

Chu, S.-C.

C.-R. Lee, S.-H. Lin, C.-H. Guo, S.-H. Chang, T.-S. Mo, and S.-C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express 18(3), 2406–2412 (2010).
[CrossRef] [PubMed]

Coles, H. J.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[CrossRef]

Colocci, M.

D. S. Wiersma, M. Colocci, R. Righini, and F. Aliev, “Temperature-controlled light diffusion in random media,” Phys. Rev. B 64(14), 144208 (2001).
[CrossRef]

De Luca, A.

S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009).
[CrossRef] [PubMed]

S. Ferjani, V. Barna, A. De Luca, C. Versace, and G. Strangi, “Random lasing in freely suspended dye-doped nematic liquid crystals,” Opt. Lett. 33(6), 557–559 (2008).
[CrossRef] [PubMed]

S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, and G. Strangi, “Statistical analysis of random lasing emission properties in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 011707 (2008).
[CrossRef] [PubMed]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006).
[CrossRef] [PubMed]

De Marco, R.

S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, and G. Strangi, “Statistical analysis of random lasing emission properties in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 011707 (2008).
[CrossRef] [PubMed]

de Oliveira, P. C.

P. C. de Oliveira, A. E. Perkins, and N. M. Lawandy, “Coherent backscattering from high-gain scattering media,” Opt. Lett. 21(20), 1685–1687 (1996).
[CrossRef] [PubMed]

Elim, H. I.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[CrossRef]

Ferjani, S.

S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009).
[CrossRef] [PubMed]

S. Ferjani, V. Barna, A. De Luca, C. Versace, and G. Strangi, “Random lasing in freely suspended dye-doped nematic liquid crystals,” Opt. Lett. 33(6), 557–559 (2008).
[CrossRef] [PubMed]

S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, and G. Strangi, “Statistical analysis of random lasing emission properties in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 011707 (2008).
[CrossRef] [PubMed]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006).
[CrossRef] [PubMed]

Ford, A. D.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[CrossRef]

Frolov, S. V.

S. V. Frolov, Z. V. Varderny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999).
[CrossRef]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Gottardo, S.

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93(26), 263901 (2004).
[CrossRef]

Guo, C.-H.

C.-R. Lee, S.-H. Lin, C.-H. Guo, S.-H. Chang, T.-S. Mo, and S.-C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express 18(3), 2406–2412 (2010).
[CrossRef] [PubMed]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Huang, B.-Y.

C.-R. Lee, J.-D. Lin, B.-Y. Huang, T.-S. Mo, and S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010).
[CrossRef] [PubMed]

Huang, S.-Y.

C.-R. Lee, J.-D. Lin, B.-Y. Huang, T.-S. Mo, and S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010).
[CrossRef] [PubMed]

Ji, W.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[CrossRef]

Lagendijk, A.

M. P. van Albada, M. B. van der Mark, and A. Lagendijk, “Observation of weak localization of light in a finite slab: anisotropy effects and light path classification,” Phys. Rev. Lett. 58(4), 361–364 (1987).
[CrossRef] [PubMed]

M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985).
[CrossRef] [PubMed]

Lawandy, N. M.

P. C. de Oliveira, A. E. Perkins, and N. M. Lawandy, “Coherent backscattering from high-gain scattering media,” Opt. Lett. 21(20), 1685–1687 (1996).
[CrossRef] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Lee, C.-R.

C.-R. Lee, J.-D. Lin, B.-Y. Huang, T.-S. Mo, and S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010).
[CrossRef] [PubMed]

C.-R. Lee, S.-H. Lin, C.-H. Guo, S.-H. Chang, T.-S. Mo, and S.-C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express 18(3), 2406–2412 (2010).
[CrossRef] [PubMed]

Lin, J.-D.

C.-R. Lee, J.-D. Lin, B.-Y. Huang, T.-S. Mo, and S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010).
[CrossRef] [PubMed]

Lin, S.-H.

C.-R. Lee, S.-H. Lin, C.-H. Guo, S.-H. Chang, T.-S. Mo, and S.-C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express 18(3), 2406–2412 (2010).
[CrossRef] [PubMed]

Liu, L. Y.

Q. H. Song, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Lett. 34(3), 298–300 (2009).
[CrossRef] [PubMed]

Q. H. Song, S. M. Xiao, X. C. Zhou, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity,” Opt. Lett. 32(4), 373–375 (2007).
[CrossRef] [PubMed]

Q. H. Song, L. Wang, S. M. Xiao, X. C. Zhou, L. Y. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
[CrossRef]

Liu, Y. J.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[CrossRef]

Maynard, R.

E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56(14), 1471–1474 (1986).
[CrossRef] [PubMed]

Mo, T.-S.

C.-R. Lee, J.-D. Lin, B.-Y. Huang, T.-S. Mo, and S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010).
[CrossRef] [PubMed]

C.-R. Lee, S.-H. Lin, C.-H. Guo, S.-H. Chang, T.-S. Mo, and S.-C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express 18(3), 2406–2412 (2010).
[CrossRef] [PubMed]

Morris, S. M.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[CrossRef]

Perkins, A. E.

P. C. de Oliveira, A. E. Perkins, and N. M. Lawandy, “Coherent backscattering from high-gain scattering media,” Opt. Lett. 21(20), 1685–1687 (1996).
[CrossRef] [PubMed]

Pivnenko, M. N.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[CrossRef]

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[CrossRef]

Raikh, M. E.

V. M. Apalkov, M. E. Raikh, and B. Shapiro, “Random resonators and prelocalized modes in disordered dielectric films,” Phys. Rev. Lett. 89(1), 016802 (2002).
[CrossRef] [PubMed]

Righini, R.

D. S. Wiersma, M. Colocci, R. Righini, and F. Aliev, “Temperature-controlled light diffusion in random media,” Phys. Rev. B 64(14), 144208 (2001).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

Scaramuzza, N.

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006).
[CrossRef] [PubMed]

Seelig, E. W.

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Shapiro, B.

V. M. Apalkov, M. E. Raikh, and B. Shapiro, “Random resonators and prelocalized modes in disordered dielectric films,” Phys. Rev. Lett. 89(1), 016802 (2002).
[CrossRef] [PubMed]

Song, Q. H.

Q. H. Song, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Lett. 34(3), 298–300 (2009).
[CrossRef] [PubMed]

Q. H. Song, S. M. Xiao, X. C. Zhou, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity,” Opt. Lett. 32(4), 373–375 (2007).
[CrossRef] [PubMed]

Q. H. Song, L. Wang, S. M. Xiao, X. C. Zhou, L. Y. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
[CrossRef]

Sorriso-Valvo, L.

S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, and G. Strangi, “Statistical analysis of random lasing emission properties in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 011707 (2008).
[CrossRef] [PubMed]

Strangi, G.

S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009).
[CrossRef] [PubMed]

S. Ferjani, V. Barna, A. De Luca, C. Versace, and G. Strangi, “Random lasing in freely suspended dye-doped nematic liquid crystals,” Opt. Lett. 33(6), 557–559 (2008).
[CrossRef] [PubMed]

S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, and G. Strangi, “Statistical analysis of random lasing emission properties in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 011707 (2008).
[CrossRef] [PubMed]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006).
[CrossRef] [PubMed]

Sun, X. W.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[CrossRef]

van Albada, M. P.

M. P. van Albada, M. B. van der Mark, and A. Lagendijk, “Observation of weak localization of light in a finite slab: anisotropy effects and light path classification,” Phys. Rev. Lett. 58(4), 361–364 (1987).
[CrossRef] [PubMed]

M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985).
[CrossRef] [PubMed]

van der Mark, M. B.

M. P. van Albada, M. B. van der Mark, and A. Lagendijk, “Observation of weak localization of light in a finite slab: anisotropy effects and light path classification,” Phys. Rev. Lett. 58(4), 361–364 (1987).
[CrossRef] [PubMed]

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[CrossRef]

Varderny, Z. V.

S. V. Frolov, Z. V. Varderny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999).
[CrossRef]

Versace, C.

S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009).
[CrossRef] [PubMed]

S. Ferjani, V. Barna, A. De Luca, C. Versace, and G. Strangi, “Random lasing in freely suspended dye-doped nematic liquid crystals,” Opt. Lett. 33(6), 557–559 (2008).
[CrossRef] [PubMed]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006).
[CrossRef] [PubMed]

Wang, L.

Q. H. Song, L. Wang, S. M. Xiao, X. C. Zhou, L. Y. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
[CrossRef]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Wang, Z. S.

Q. H. Song, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Lett. 34(3), 298–300 (2009).
[CrossRef] [PubMed]

Q. H. Song, S. M. Xiao, X. C. Zhou, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity,” Opt. Lett. 32(4), 373–375 (2007).
[CrossRef] [PubMed]

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93(26), 263901 (2004).
[CrossRef]

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[CrossRef] [PubMed]

D. S. Wiersma, M. Colocci, R. Righini, and F. Aliev, “Temperature-controlled light diffusion in random media,” Phys. Rev. B 64(14), 144208 (2001).
[CrossRef]

D. S. Wiersma, “The smallest random laser,” Nature 406(6792), 132–135 (2000).
[CrossRef] [PubMed]

Wolf, P. E.

E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56(14), 1471–1474 (1986).
[CrossRef] [PubMed]

Wu, Y. G.

Q. H. Song, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Lett. 34(3), 298–300 (2009).
[CrossRef] [PubMed]

Q. H. Song, S. M. Xiao, X. C. Zhou, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity,” Opt. Lett. 32(4), 373–375 (2007).
[CrossRef] [PubMed]

Xiao, S. M.

Q. H. Song, S. M. Xiao, X. C. Zhou, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity,” Opt. Lett. 32(4), 373–375 (2007).
[CrossRef] [PubMed]

Q. H. Song, L. Wang, S. M. Xiao, X. C. Zhou, L. Y. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
[CrossRef]

Xu, J. Y.

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[CrossRef]

Xu, L.

Q. H. Song, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Lett. 34(3), 298–300 (2009).
[CrossRef] [PubMed]

Q. H. Song, S. M. Xiao, X. C. Zhou, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity,” Opt. Lett. 32(4), 373–375 (2007).
[CrossRef] [PubMed]

Q. H. Song, L. Wang, S. M. Xiao, X. C. Zhou, L. Y. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
[CrossRef]

Yaroshchuk, O.

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93(26), 263901 (2004).
[CrossRef]

Yoshino, K.

S. V. Frolov, Z. V. Varderny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999).
[CrossRef]

Zakhidov, A.

S. V. Frolov, Z. V. Varderny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999).
[CrossRef]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

Zhou, X. C.

Q. H. Song, S. M. Xiao, X. C. Zhou, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity,” Opt. Lett. 32(4), 373–375 (2007).
[CrossRef] [PubMed]

Q. H. Song, L. Wang, S. M. Xiao, X. C. Zhou, L. Y. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[CrossRef]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[CrossRef]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[CrossRef]

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[CrossRef]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

Nature (3)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[CrossRef]

D. S. Wiersma, “The smallest random laser,” Nature 406(6792), 132–135 (2000).
[CrossRef] [PubMed]

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[CrossRef] [PubMed]

Opt. Express (4)

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006).
[CrossRef] [PubMed]

S. Ferjani, A. De Luca, V. Barna, C. Versace, and G. Strangi, “Thermo-recurrent nematic random laser,” Opt. Express 17(3), 2042–2047 (2009).
[CrossRef] [PubMed]

C.-R. Lee, S.-H. Lin, C.-H. Guo, S.-H. Chang, T.-S. Mo, and S.-C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express 18(3), 2406–2412 (2010).
[CrossRef] [PubMed]

C.-R. Lee, J.-D. Lin, B.-Y. Huang, T.-S. Mo, and S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18(25), 25896–25905 (2010).
[CrossRef] [PubMed]

Opt. Lett. (4)

P. C. de Oliveira, A. E. Perkins, and N. M. Lawandy, “Coherent backscattering from high-gain scattering media,” Opt. Lett. 21(20), 1685–1687 (1996).
[CrossRef] [PubMed]

Q. H. Song, S. M. Xiao, X. C. Zhou, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity,” Opt. Lett. 32(4), 373–375 (2007).
[CrossRef] [PubMed]

S. Ferjani, V. Barna, A. De Luca, C. Versace, and G. Strangi, “Random lasing in freely suspended dye-doped nematic liquid crystals,” Opt. Lett. 33(6), 557–559 (2008).
[CrossRef] [PubMed]

Q. H. Song, L. Y. Liu, L. Xu, Y. G. Wu, and Z. S. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Lett. 34(3), 298–300 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (3)

Q. H. Song, L. Wang, S. M. Xiao, X. C. Zhou, L. Y. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
[CrossRef]

S. V. Frolov, Z. V. Varderny, K. Yoshino, A. Zakhidov, and R. H. Baughman, “Stimulated emission in high-gain organic media,” Phys. Rev. B 59(8), R5284–R5287 (1999).
[CrossRef]

D. S. Wiersma, M. Colocci, R. Righini, and F. Aliev, “Temperature-controlled light diffusion in random media,” Phys. Rev. B 64(14), 144208 (2001).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, and G. Strangi, “Statistical analysis of random lasing emission properties in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(1), 011707 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett. (6)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[CrossRef]

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93(26), 263901 (2004).
[CrossRef]

V. M. Apalkov, M. E. Raikh, and B. Shapiro, “Random resonators and prelocalized modes in disordered dielectric films,” Phys. Rev. Lett. 89(1), 016802 (2002).
[CrossRef] [PubMed]

M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55(24), 2692–2695 (1985).
[CrossRef] [PubMed]

E. Akkermans, P. E. Wolf, and R. Maynard, “Coherent backscattering of light by disordered media: Analysis of the peak line shape,” Phys. Rev. Lett. 56(14), 1471–1474 (1986).
[CrossRef] [PubMed]

M. P. van Albada, M. B. van der Mark, and A. Lagendijk, “Observation of weak localization of light in a finite slab: anisotropy effects and light path classification,” Phys. Rev. Lett. 58(4), 361–364 (1987).
[CrossRef] [PubMed]

Other (1)

D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, Handbook of Liquid Crystals (Wiley-VCH, Weinheim, 1998), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Top view of the experimental setup for examining the DDLC random lasers and their electric controllabilities with the use of an externally applied AC voltage. The inset is the scheme of a DDLC cell applied with an AC voltage (Va, 1 kHz). λ/2 WP, P, and NBS are the half waveplate (for 532 nm), polarizer, and nonpolarizing beam splitter, respectively. The random lasing emission can be obtained along (N) (cell normal), and a fiber-optic probe of a fiber-based spectrometer faces (N) to record the emission intensity of the obtained random lasing.

Fig. 2
Fig. 2

Variations of (a) the measured fluorescence intensity spectra and (b) the peak intensity of fluorescence output and corresponding FWHM with incident pumped energy in a DDLC with the addition of an azo-dye. The inset in (b) indicates the emission pattern of the obtained random lasing emission on the screen placed behind the cell at E = 16μJ/pulse.

Fig. 3
Fig. 3

Variations of (a) the measured fluorescence intensity spectra at E = 16μJ/pulse and (b) the peak intensity of fluorescence output versus incident pumped energy with increasing the applied voltage from 0 to 1.2 V based on the DDLC random laser with the addition of an azo-dye.

Fig. 4
Fig. 4

(a) Experimental setup for measuring the variation in the transmission of the probing He-Ne laser beam normally through the DDLC cell with the applied voltage (Va, 1 kHz). The polarizer is crossed with the analyzer, and the angle of the transmission axis of the polarizer relative to (R) is 45°. (b) Variation in the cell transmission with the applied voltage. At Va < 1.2 V, the cell transmission fluctuates slightly due to the multi-scattering effect of the LC micro-domains with different orientations. The controllable range of the operating voltage for the DDLC random laser is as low as 0-1.2 V (see Fig. 3), which is lower than Vth = 2.1 V.

Fig. 5
Fig. 5

(a) A model describing the variation in the spatial nonuniformity of the orientational order (S), and thus of the dielectric tensor (ε) for LCs, and induced multiple scattering of fluorescence and thus of the random lasing, where δr, δS, and δε denote the differential displacement, differential orientational order, and differential dielectric tensor of LCs between adjacent local LC micro-domains in the cell bulk, respectively. Vectors (R) and (E)a denote the rubbing direction of the cell and the applied electric field, respectively. At Va = 0 V, the orientations of the local LC micro-domains are inconsistent in bulk due to the weak anchoring of the surfaces of the substrates in the thick cell. The nonzero differential quantity, δS (and thus δε) of LCs, leads to the recurrent multi-scattering and thus the generation of the random lasing at Va < 1.2 V. With increasing Va ≥ 1.2 V, the orientations of local LC micro-domains become consistent roughly along the direction of (R) under the influence of the applied electric field, resulting in the non-occurrence of multi-scattering and thus of the random lasing. (b) Transmission image of the DDLC cell recorded under a polarizing optical microscope with crossed polarisers (P⊥A) at Va = 0 V, in which the contrast of the obtained image has been adjusted for a clear presentation of the LC micro-domains with different brightness levels. The rubbing direction of the cell is set parallel to the transmission axis of the polarizer. The length of the white bar in the image is 50μm.

Fig. 6
Fig. 6

Variations in (a) the measured fluorescence intensity spectra at E = 16μJ/pulse and (b) the peak intensity of fluorescence output versus incident pumped energy with an increase in the applied voltage from 0 to 2.0 V based on the DDLC random laser without adding an azo-dye.

Fig. 7
Fig. 7

Variation in the cell transmission with the applied voltage. At Va < 2.0 V, the cell transmission fluctuates slightly due to the multi-scattering effect of the LC micro-domains with different orientations. The controllable range of the operating voltage for the DDLC random laser without adding an azo-dye is 0-2.0 V (see Fig. 6), which is lower than Vth = 2.1 V.

Fig. 8
Fig. 8

Measured absorption spectra in the spectral region of 400-700 nm for the 8wt% 4MAB added E7 cell before and after the cell is excited by the pumped pulses for one minute (red and black curves, respectively) and for the 0.3wt% P650-doped E7 cell (blue curve).

Tables (1)

Tables Icon

Table 1 A comparison between the measured data of mean free path (ℓ*), energy threshold (Eth), and peak wavelength (λpeak) and FWHM of E = 16 μJ/pulse for the cases of DDLC cells (a) with and (b) without adding the azo dye at different applied voltages (Va)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ λ 2 π *   .
D = υ * 3   ,
V t h = π k 11 ε 0 Δ ε   ,

Metrics