Abstract

This paper presents a novel scheme to generate and detect Brillouin dynamic grating in a polarization-maintaining optical fiber based on one laser source. Precise measurement of Brillouin dynamic grating spectrum is achieved benefiting from that the pump, probe and readout waves are coherently originated from the same laser source. Distributed discrimination of strain and temperature is also achieved with high accuracy.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001), ch. 9.
  2. K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
    [CrossRef] [PubMed]
  3. T. Okoshi, “Single-polarization single-mode optical fibers,” IEEE J. Quantum Electron. 17(6), 879–884 (1981).
    [CrossRef]
  4. V. P. Kalosha, W. Li, F. Wang, L. Chen, and X. Bao, “Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers,” Opt. Lett. 33(23), 2848–2850 (2008).
    [CrossRef] [PubMed]
  5. K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
    [CrossRef]
  6. W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
    [CrossRef] [PubMed]
  7. W. Zou, Z. He, K. Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
    [CrossRef] [PubMed]
  8. W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett. 22(8), 526–528 (2010).
    [CrossRef]
  9. K. Y. Song, W. Zou, Z. He, and K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34(9), 1381–1383 (2009).
    [CrossRef] [PubMed]

2010

K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
[CrossRef]

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett. 22(8), 526–528 (2010).
[CrossRef]

2009

K. Y. Song, W. Zou, Z. He, and K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34(9), 1381–1383 (2009).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[CrossRef] [PubMed]

W. Zou, Z. He, K. Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
[CrossRef] [PubMed]

2008

K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
[CrossRef] [PubMed]

V. P. Kalosha, W. Li, F. Wang, L. Chen, and X. Bao, “Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers,” Opt. Lett. 33(23), 2848–2850 (2008).
[CrossRef] [PubMed]

1981

T. Okoshi, “Single-polarization single-mode optical fibers,” IEEE J. Quantum Electron. 17(6), 879–884 (1981).
[CrossRef]

Bao, X.

V. P. Kalosha, W. Li, F. Wang, L. Chen, and X. Bao, “Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers,” Opt. Lett. 33(23), 2848–2850 (2008).
[CrossRef] [PubMed]

Chen, L.

V. P. Kalosha, W. Li, F. Wang, L. Chen, and X. Bao, “Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers,” Opt. Lett. 33(23), 2848–2850 (2008).
[CrossRef] [PubMed]

Chin, S.

K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
[CrossRef]

He, Z.

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett. 22(8), 526–528 (2010).
[CrossRef]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34(9), 1381–1383 (2009).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[CrossRef] [PubMed]

W. Zou, Z. He, K. Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
[CrossRef] [PubMed]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
[CrossRef] [PubMed]

Hotate, K.

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett. 22(8), 526–528 (2010).
[CrossRef]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34(9), 1381–1383 (2009).
[CrossRef] [PubMed]

W. Zou, Z. He, K. Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[CrossRef] [PubMed]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
[CrossRef] [PubMed]

Kalosha, V. P.

V. P. Kalosha, W. Li, F. Wang, L. Chen, and X. Bao, “Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers,” Opt. Lett. 33(23), 2848–2850 (2008).
[CrossRef] [PubMed]

Li, W.

V. P. Kalosha, W. Li, F. Wang, L. Chen, and X. Bao, “Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers,” Opt. Lett. 33(23), 2848–2850 (2008).
[CrossRef] [PubMed]

Okoshi, T.

T. Okoshi, “Single-polarization single-mode optical fibers,” IEEE J. Quantum Electron. 17(6), 879–884 (1981).
[CrossRef]

Primerov, N.

K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
[CrossRef]

Song, K. Y.

K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
[CrossRef]

W. Zou, Z. He, K. Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
[CrossRef] [PubMed]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34(9), 1381–1383 (2009).
[CrossRef] [PubMed]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
[CrossRef] [PubMed]

Thévenaz, L.

K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
[CrossRef]

Wang, F.

V. P. Kalosha, W. Li, F. Wang, L. Chen, and X. Bao, “Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers,” Opt. Lett. 33(23), 2848–2850 (2008).
[CrossRef] [PubMed]

Zou, W.

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett. 22(8), 526–528 (2010).
[CrossRef]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34(9), 1381–1383 (2009).
[CrossRef] [PubMed]

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[CrossRef] [PubMed]

W. Zou, Z. He, K. Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
[CrossRef] [PubMed]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

T. Okoshi, “Single-polarization single-mode optical fibers,” IEEE J. Quantum Electron. 17(6), 879–884 (1981).
[CrossRef]

IEEE Photon. Technol. Lett.

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett. 22(8), 526–528 (2010).
[CrossRef]

J. Lightwave Technol.

K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
[CrossRef]

Opt. Express

W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
[CrossRef] [PubMed]

Opt. Lett.

W. Zou, Z. He, K. Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
[CrossRef] [PubMed]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34(9), 1381–1383 (2009).
[CrossRef] [PubMed]

V. P. Kalosha, W. Li, F. Wang, L. Chen, and X. Bao, “Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers,” Opt. Lett. 33(23), 2848–2850 (2008).
[CrossRef] [PubMed]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001), ch. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup of one-laser-based Brillouin dynamic grating generation/detection and discrimination of strain and temperature based on BOCDA. The light from DFB-LD is intensity-modulated to generate two sidebands with suppressed carrier. The lower sideband (through TBF1) is used as the source of pump/probe to generate (and measure) SBS, and to write Brillouin dynamic grating; the upper sideband (through FBG) is used as the readout wave to measure the spectrum of the Brillouin dynamic grating. The abbreviations are explained in the text body.

Fig. 2
Fig. 2

Optical spectra of DSB-SC signal, pump and readout waves. (a) the DFB-LD is driven by a dc current; (b) a sinusoidal frequency modulation is applied to the DFB-LD. Gray curves denote the readout wave after passing an optical filter.

Fig. 3
Fig. 3

Measured DGS in a 5-m PMF showing a main peak with 27-MHz linewidth and several subtle peaks with discrete f yx. In comparison, previous works gave only one broad peak with 200~300-MHz linewidth. Dots, experimental data; solid curve, Lorentz fitting to the experimental data.

Fig. 4
Fig. 4

Measured 3-D distribution of DGS of a PMF when (a) the entire fiber was in loose state, (b) a ~14-cm portion at 3.1-m location was strained by ε = 2000 με. T = 25°C.

Fig. 5
Fig. 5

Comparison of DGS measurement accuracy between one-laser scheme and two-laser scheme.

Fig. 6
Fig. 6

Measured distribution of Brillouin frequency ν B (a) and birefringence-determined frequency deviation fyx (b). Discriminated distribution of strain (c) and temperature (d). Solid lines (Status 1): T = 25 °C, ε = 0 με; squares (Status 2): T = 25 °C, ε = 2000 με; circles (Status 3): T = 30 °C, ε = 2000 με.

Fig. A1
Fig. A1

Dispersion properties of all pump, probe and readout waves together with acoustic wave (Brillouin dynamic grating).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω o p = c | β o p | ,
ω a c = V a | β a c | ,

Metrics