Abstract

An integrated tunable microlens, whose focal length may be varied over a range of 3 to 15 mm with total power consumption below 250 mW, is presented. Using thermo-pneumatic actuation, this adaptive optical microsystem is completely integrated and requires no external pressure controllers for operation. The lens system consists of a liquid-filled cavity bounded by a distensible polydimethyl-siloxane membrane and a separate thermal cavity with actuation and sensing elements, all fabricated using silicon, glass and polymers. Due to the physical separation of thermal actuators and lens body, temperature gradients in the lens optical aperture were below 4°C in the vertical and 0.2°C in the lateral directions. Optical characterization showed that the cutoff frequency of the optical transfer function, using a reference contrast of 0.2, varied from 30 lines/mm to 65 lines/mm over the tuning range, and a change in the numerical aperture from 0.067 to 0.333. Stable control of the focal length over a long time period using a simple electronic stabilization circuit was demonstrated.

© 2011 OSA

Full Article  |  PDF Article
Related Articles
Tunable liquid-filled microlens array integrated with microfluidic network

Nikolas Chronis, Gang L. Liu, Ki-Hun Jeong, and Luke P. Lee
Opt. Express 11(19) 2370-2378 (2003)

Tunable microfluidic microlenses

Armin Werber and Hans Zappe
Appl. Opt. 44(16) 3238-3245 (2005)

Set of two orthogonal adaptive cylindrical lenses in a monolith elastomer device

Lin Pang, Uriel Levy, Kyle Campbell, Alex Groisman, and Yeshaiahu Fainman
Opt. Express 13(22) 9003-9013 (2005)

References

  • View by:
  • |
  • |
  • |

  1. W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21, 304306 (2009).
    [Crossref]
  2. W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y. H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34, 3214–3216 (2009).
    [Crossref] [PubMed]
  3. K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A: Pure Appl. Opt. 10, 044012 (8pp) (2008).
    [Crossref]
  4. H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782–4790 (2009).
    [Crossref] [PubMed]
  5. H. W. Ren, D. Fox, P. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
    [Crossref] [PubMed]
  6. H. W. Ren and S. T. Wua, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
    [Crossref]
  7. A. Naumov, G. Love, M. Y. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4, 344–352 (1999).
    [Crossref] [PubMed]
  8. D.Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance Fluidic Adaptive Lenses,” Appl. Opt. 43, 783–787 (2004).
    [Crossref] [PubMed]
  9. N. T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics 4, 031501 (2010)
    [Crossref]
  10. H. Yu, G. Zhou, H. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express. 18, 9945–9954 (2010).
    [Crossref] [PubMed]
  11. S. Kuipera and B. H. W. Hendriks, “Variable-focus liquid lens for miniature camera,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [Crossref]
  12. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. D. Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16, 8084–8093 (2008).
    [Crossref] [PubMed]
  13. A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 16, 3238–3245 (2007).
  14. M. D. Volder and D. Reynaerts, “Pneumatic and hydraulic microactuators: a review,” J.Micromech.Microeng. 20, 043001 (2010).
    [Crossref]
  15. N. B. Justis, D. Y. Zhang, and Y.-H. Lo, “Integrated dynamic fluidic lens system for in vivo biological imaging,” Engineering in Medicine and Biology Society, IEMBS ’04. 26th Annual International Conference of the IEEE, pp.1256–1259 (2004)
    [Crossref] [PubMed]
  16. F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe “Optical characterization of adaptive fluidic silicone-membrane lenses” Opt. Express 17, 11813–11821, (2009)
    [Crossref] [PubMed]
  17. Y. J. Yang and H. H. Liao, “Development and characterization of thermopneumatic peristaltic micropumps,” J.Micromech.Microeng. 19, 025003 (2009).
    [Crossref]
  18. A. Werber and H. Zappe, “Thermo-pneumatically actuated, membrane-based micro-mirror devices,” J.Micromech.Microeng. 16, 2524531 (2006).
    [Crossref]
  19. W. Wang and J. Fang, “Design, fabrication and testing of a micromachined integrated tunable microlens,” J.Micromech.Microeng. 16, 1221–1226 (2006).
    [Crossref]
  20. S. Sawano, K. Naka, A. Werber, H. Zappe, and S. Konishi, “Sealing method of PDMS as elastic material for MEMS,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems, 419 –422 (2008).
    [Crossref]
  21. J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Anal. Chem. 75, 6544–6554 (2003).
    [Crossref] [PubMed]
  22. G. P. Behrmann and J. P. Bowen, “Influence of temperature on diffractive lens performance,” Appl. Opt. 32, 2483–2489 (1993).
    [Crossref] [PubMed]
  23. Y. A. Cengel, “Heat transfer:a practical approach,” pp.860 (2002).
  24. H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sensors and Actuators B: Chemical 65, 190 – 192 (2000).
    [Crossref]
  25. W. Zhang, K. Aljasem, H. Zappe, and A. Seifert “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18, 12458–12469 (2010).
    [Crossref] [PubMed]
  26. K. Handique, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping” Anal. Chem. 73, 1831–1838 (2001)
    [Crossref] [PubMed]
  27. P. Srinivasan and S. M. Spearing “Material Selection for Optimal Design of Thermally Actuated Pneumatic and Phase Change Microactuators,” JMEMS. 18, 239–249 (2009)

2010 (4)

N. T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics 4, 031501 (2010)
[Crossref]

H. Yu, G. Zhou, H. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express. 18, 9945–9954 (2010).
[Crossref] [PubMed]

M. D. Volder and D. Reynaerts, “Pneumatic and hydraulic microactuators: a review,” J.Micromech.Microeng. 20, 043001 (2010).
[Crossref]

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18, 12458–12469 (2010).
[Crossref] [PubMed]

2009 (6)

P. Srinivasan and S. M. Spearing “Material Selection for Optimal Design of Thermally Actuated Pneumatic and Phase Change Microactuators,” JMEMS. 18, 239–249 (2009)

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe “Optical characterization of adaptive fluidic silicone-membrane lenses” Opt. Express 17, 11813–11821, (2009)
[Crossref] [PubMed]

Y. J. Yang and H. H. Liao, “Development and characterization of thermopneumatic peristaltic micropumps,” J.Micromech.Microeng. 19, 025003 (2009).
[Crossref]

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21, 304306 (2009).
[Crossref]

W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y. H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34, 3214–3216 (2009).
[Crossref] [PubMed]

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782–4790 (2009).
[Crossref] [PubMed]

2008 (2)

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A: Pure Appl. Opt. 10, 044012 (8pp) (2008).
[Crossref]

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. D. Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16, 8084–8093 (2008).
[Crossref] [PubMed]

2007 (1)

A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 16, 3238–3245 (2007).

2006 (3)

A. Werber and H. Zappe, “Thermo-pneumatically actuated, membrane-based micro-mirror devices,” J.Micromech.Microeng. 16, 2524531 (2006).
[Crossref]

W. Wang and J. Fang, “Design, fabrication and testing of a micromachined integrated tunable microlens,” J.Micromech.Microeng. 16, 1221–1226 (2006).
[Crossref]

H. W. Ren, D. Fox, P. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
[Crossref] [PubMed]

2005 (1)

H. W. Ren and S. T. Wua, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
[Crossref]

2004 (2)

S. Kuipera and B. H. W. Hendriks, “Variable-focus liquid lens for miniature camera,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

D.Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance Fluidic Adaptive Lenses,” Appl. Opt. 43, 783–787 (2004).
[Crossref] [PubMed]

2003 (1)

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Anal. Chem. 75, 6544–6554 (2003).
[Crossref] [PubMed]

2001 (1)

K. Handique, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping” Anal. Chem. 73, 1831–1838 (2001)
[Crossref] [PubMed]

2000 (1)

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sensors and Actuators B: Chemical 65, 190 – 192 (2000).
[Crossref]

1999 (1)

1993 (1)

Aljasem, K.

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18, 12458–12469 (2010).
[Crossref] [PubMed]

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A: Pure Appl. Opt. 10, 044012 (8pp) (2008).
[Crossref]

Anderson, P.

Behrmann, G. P.

Berdichevsky, Y.

Bowen, J. P.

Burke, D. T.

K. Handique, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping” Anal. Chem. 73, 1831–1838 (2001)
[Crossref] [PubMed]

Burns, M. A.

K. Handique, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping” Anal. Chem. 73, 1831–1838 (2001)
[Crossref] [PubMed]

Cengel, Y. A.

Y. A. Cengel, “Heat transfer:a practical approach,” pp.860 (2002).

Ceuninck, W. D.

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sensors and Actuators B: Chemical 65, 190 – 192 (2000).
[Crossref]

Chau, F. S.

H. Yu, G. Zhou, H. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express. 18, 9945–9954 (2010).
[Crossref] [PubMed]

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782–4790 (2009).
[Crossref] [PubMed]

Cho, S. H.

W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y. H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34, 3214–3216 (2009).
[Crossref] [PubMed]

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21, 304306 (2009).
[Crossref]

Draheim, J.

Esch, H.

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sensors and Actuators B: Chemical 65, 190 – 192 (2000).
[Crossref]

Fang, J.

W. Wang and J. Fang, “Design, fabrication and testing of a micromachined integrated tunable microlens,” J.Micromech.Microeng. 16, 1221–1226 (2006).
[Crossref]

Ferraro, P.

Finizio, A.

Fox, D.

Grilli, S.

Handique, K.

K. Handique, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping” Anal. Chem. 73, 1831–1838 (2001)
[Crossref] [PubMed]

Hendriks, B. H. W.

S. Kuipera and B. H. W. Hendriks, “Variable-focus liquid lens for miniature camera,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

Huyberechts, G.

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sensors and Actuators B: Chemical 65, 190 – 192 (2000).
[Crossref]

Johnson, D.

Justis, N.

Justis, N. B.

N. B. Justis, D. Y. Zhang, and Y.-H. Lo, “Integrated dynamic fluidic lens system for in vivo biological imaging,” Engineering in Medicine and Biology Society, IEMBS ’04. 26th Annual International Conference of the IEEE, pp.1256–1259 (2004)
[Crossref] [PubMed]

Kamberger, R.

Konishi, S.

S. Sawano, K. Naka, A. Werber, H. Zappe, and S. Konishi, “Sealing method of PDMS as elastic material for MEMS,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems, 419 –422 (2008).
[Crossref]

Kuipera, S.

S. Kuipera and B. H. W. Hendriks, “Variable-focus liquid lens for miniature camera,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

Lee, F. W.

Lee, J. N.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Anal. Chem. 75, 6544–6554 (2003).
[Crossref] [PubMed]

Leung, H.

H. Yu, G. Zhou, H. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express. 18, 9945–9954 (2010).
[Crossref] [PubMed]

Leung, H. M.

Liao, H. H.

Y. J. Yang and H. H. Liao, “Development and characterization of thermopneumatic peristaltic micropumps,” J.Micromech.Microeng. 19, 025003 (2009).
[Crossref]

Lien, V.

Lo, Y. H.

Lo, Y.-H.

N. B. Justis, D. Y. Zhang, and Y.-H. Lo, “Integrated dynamic fluidic lens system for in vivo biological imaging,” Engineering in Medicine and Biology Society, IEMBS ’04. 26th Annual International Conference of the IEEE, pp.1256–1259 (2004)
[Crossref] [PubMed]

Loktev, M. Y.

Love, G.

Maes, G.

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sensors and Actuators B: Chemical 65, 190 – 192 (2000).
[Crossref]

Manca, J.

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sensors and Actuators B: Chemical 65, 190 – 192 (2000).
[Crossref]

Mastrangelo, C. H.

K. Handique, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping” Anal. Chem. 73, 1831–1838 (2001)
[Crossref] [PubMed]

Mertens, R.

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sensors and Actuators B: Chemical 65, 190 – 192 (2000).
[Crossref]

Miccio, L.

Naka, K.

S. Sawano, K. Naka, A. Werber, H. Zappe, and S. Konishi, “Sealing method of PDMS as elastic material for MEMS,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems, 419 –422 (2008).
[Crossref]

Naumov, A.

Nguyen, N. T.

N. T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics 4, 031501 (2010)
[Crossref]

Nicola, S. D.

Park, C.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Anal. Chem. 75, 6544–6554 (2003).
[Crossref] [PubMed]

Qiao, W.

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21, 304306 (2009).
[Crossref]

W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y. H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34, 3214–3216 (2009).
[Crossref] [PubMed]

Ren, H. W.

Reynaerts, D.

M. D. Volder and D. Reynaerts, “Pneumatic and hydraulic microactuators: a review,” J.Micromech.Microeng. 20, 043001 (2010).
[Crossref]

Sawano, S.

S. Sawano, K. Naka, A. Werber, H. Zappe, and S. Konishi, “Sealing method of PDMS as elastic material for MEMS,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems, 419 –422 (2008).
[Crossref]

Schepper, L. D.

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sensors and Actuators B: Chemical 65, 190 – 192 (2000).
[Crossref]

Schneider, F.

Seifert, A.

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18, 12458–12469 (2010).
[Crossref] [PubMed]

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A: Pure Appl. Opt. 10, 044012 (8pp) (2008).
[Crossref]

Spearing, S. M.

P. Srinivasan and S. M. Spearing “Material Selection for Optimal Design of Thermally Actuated Pneumatic and Phase Change Microactuators,” JMEMS. 18, 239–249 (2009)

Srinivasan, P.

P. Srinivasan and S. M. Spearing “Material Selection for Optimal Design of Thermally Actuated Pneumatic and Phase Change Microactuators,” JMEMS. 18, 239–249 (2009)

Tsai, F. S.

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21, 304306 (2009).
[Crossref]

W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y. H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34, 3214–3216 (2009).
[Crossref] [PubMed]

Vespini, V.

Vladimirov, F.

Volder, M. D.

M. D. Volder and D. Reynaerts, “Pneumatic and hydraulic microactuators: a review,” J.Micromech.Microeng. 20, 043001 (2010).
[Crossref]

Waibel, P.

Wallrabe, U.

Wang, S. H.

Wang, W.

W. Wang and J. Fang, “Design, fabrication and testing of a micromachined integrated tunable microlens,” J.Micromech.Microeng. 16, 1221–1226 (2006).
[Crossref]

Werber, A.

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A: Pure Appl. Opt. 10, 044012 (8pp) (2008).
[Crossref]

A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 16, 3238–3245 (2007).

A. Werber and H. Zappe, “Thermo-pneumatically actuated, membrane-based micro-mirror devices,” J.Micromech.Microeng. 16, 2524531 (2006).
[Crossref]

S. Sawano, K. Naka, A. Werber, H. Zappe, and S. Konishi, “Sealing method of PDMS as elastic material for MEMS,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems, 419 –422 (2008).
[Crossref]

Whitesides, G. M.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Anal. Chem. 75, 6544–6554 (2003).
[Crossref] [PubMed]

Wu, B.

Wu, S. T.

Wua, S. T.

H. W. Ren and S. T. Wua, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
[Crossref]

Yan, H.

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21, 304306 (2009).
[Crossref]

Yang, Y. J.

Y. J. Yang and H. H. Liao, “Development and characterization of thermopneumatic peristaltic micropumps,” J.Micromech.Microeng. 19, 025003 (2009).
[Crossref]

Yu, H.

H. Yu, G. Zhou, H. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express. 18, 9945–9954 (2010).
[Crossref] [PubMed]

Yu, H. B.

Zappe, H.

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18, 12458–12469 (2010).
[Crossref] [PubMed]

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A: Pure Appl. Opt. 10, 044012 (8pp) (2008).
[Crossref]

A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 16, 3238–3245 (2007).

A. Werber and H. Zappe, “Thermo-pneumatically actuated, membrane-based micro-mirror devices,” J.Micromech.Microeng. 16, 2524531 (2006).
[Crossref]

S. Sawano, K. Naka, A. Werber, H. Zappe, and S. Konishi, “Sealing method of PDMS as elastic material for MEMS,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems, 419 –422 (2008).
[Crossref]

Zhang, D. Y.

N. B. Justis, D. Y. Zhang, and Y.-H. Lo, “Integrated dynamic fluidic lens system for in vivo biological imaging,” Engineering in Medicine and Biology Society, IEMBS ’04. 26th Annual International Conference of the IEEE, pp.1256–1259 (2004)
[Crossref] [PubMed]

Zhang, D.Y.

Zhang, W.

Zhou, G.

H. Yu, G. Zhou, H. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express. 18, 9945–9954 (2010).
[Crossref] [PubMed]

Zhou, G. Y.

Anal. Chem. (2)

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Anal. Chem. 75, 6544–6554 (2003).
[Crossref] [PubMed]

K. Handique, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping” Anal. Chem. 73, 1831–1838 (2001)
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

H. W. Ren and S. T. Wua, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
[Crossref]

S. Kuipera and B. H. W. Hendriks, “Variable-focus liquid lens for miniature camera,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[Crossref]

Biomicrofluidics (1)

N. T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicrofluidics 4, 031501 (2010)
[Crossref]

IEEE Photon. Technol. Lett. (1)

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21, 304306 (2009).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A: Pure Appl. Opt. 10, 044012 (8pp) (2008).
[Crossref]

J.Micromech.Microeng. (4)

Y. J. Yang and H. H. Liao, “Development and characterization of thermopneumatic peristaltic micropumps,” J.Micromech.Microeng. 19, 025003 (2009).
[Crossref]

A. Werber and H. Zappe, “Thermo-pneumatically actuated, membrane-based micro-mirror devices,” J.Micromech.Microeng. 16, 2524531 (2006).
[Crossref]

W. Wang and J. Fang, “Design, fabrication and testing of a micromachined integrated tunable microlens,” J.Micromech.Microeng. 16, 1221–1226 (2006).
[Crossref]

M. D. Volder and D. Reynaerts, “Pneumatic and hydraulic microactuators: a review,” J.Micromech.Microeng. 20, 043001 (2010).
[Crossref]

JMEMS. (1)

P. Srinivasan and S. M. Spearing “Material Selection for Optimal Design of Thermally Actuated Pneumatic and Phase Change Microactuators,” JMEMS. 18, 239–249 (2009)

Opt. Express (6)

Opt. Express. (1)

H. Yu, G. Zhou, H. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express. 18, 9945–9954 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Sensors and Actuators B: Chemical (1)

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sensors and Actuators B: Chemical 65, 190 – 192 (2000).
[Crossref]

Other (3)

N. B. Justis, D. Y. Zhang, and Y.-H. Lo, “Integrated dynamic fluidic lens system for in vivo biological imaging,” Engineering in Medicine and Biology Society, IEMBS ’04. 26th Annual International Conference of the IEEE, pp.1256–1259 (2004)
[Crossref] [PubMed]

Y. A. Cengel, “Heat transfer:a practical approach,” pp.860 (2002).

S. Sawano, K. Naka, A. Werber, H. Zappe, and S. Konishi, “Sealing method of PDMS as elastic material for MEMS,” in Proceedings of IEEE Conference on Micro Electro Mechanical Systems, 419 –422 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic design of the thermally tunable lens, with the device dimensions shown. The lens cavity is filled with an optical liquid and the chambers of the thermal pump are filled with air. Thermal expansion of the air causes compression of the liquid and distension of the lens membrane, shown as a concave surface at the top of the structure.

Fig. 2
Fig. 2

AFM measurement results of PDMS surface quality. (a) non-etched front side of the PDMS membrane; (b) etched back side of the PDMS membrane

Fig. 3
Fig. 3

Fabrication of the support ring and heater element: (a) fabrication of the support ring by a standard casting process. (b) photo of the PDMS ring forming the lens cavity. (c) fabrication of the heater layer using a standard lift-off process for the heater and sensor structures. (d) photo of the heater layer.

Fig. 4
Fig. 4

Photograph of the integrated tunable microlens: the silicon wafer is mounted on the PDMS layer. The curvature of the distended lens is seen at the top.

Fig. 5
Fig. 5

Schematic of the temperature control unit. RS: reference resistor, RT: variable sensor resistor.

Fig. 6
Fig. 6

CAD model of the thermopneumatic tunable lens, consisting of a silicon chip, a PDMS layer, an optical liquid, a thermal pump, and a heating layer on a glass chip.

Fig. 7
Fig. 7

Temperature gradient in the lens body: (a) vertical direction and (b) radially, for a bias of 3 V applied to the heaters.

Fig. 8
Fig. 8

Measurement and simulation results of the temperature in the air cavities of the thermal pump

Fig. 9
Fig. 9

Characterization of sensor elements. (a) Resistance of 3 sensors of different geometric structure at room temperature after different annealing times at the same annealing temperature (250°C ) in air ambiance; (b) relationship between resistance and temperature after annealing

Fig. 10
Fig. 10

AFM measurements of the Pt surface (a) before annealing (b) after annealing, 100 min at 250°C

Fig. 11
Fig. 11

Vertical deformation S of the thermal pump as a function of voltage applied to the heaters.

Fig. 12
Fig. 12

Diagram of the back focal length and MTF measurement setup. An approximate point source at an infinite conjugate is generated by a multimode fiber and a collimator lens. A manually controlled microscope platform is used to fix the microlens under test. Objective lenses of different magnification are used for the variation of the image size of the focal point of the lens under test. A high quality CCD records the image.

Fig. 13
Fig. 13

Measured back focal length as a function of the applied voltage using the optical liquid FC40. The dashed line is an empirical fit through the back focal length data. The solid line is a linear fit through the corresponding temperature values.

Fig. 14
Fig. 14

Experimentally determined MTF curves of the thermo-pneumatically actuated lens at different temperature values and hence back focal lengths. The back focal lengths for a given temperature are determined from Fig. 13.

Fig. 15
Fig. 15

(a) Change of the focal length tuning characteristic due to the presence of bubbles in the liquid using immersion oil. (b) Variation of focal length without bubbles.

Fig. 16
Fig. 16

Images of an F target for different focal lengths

Tables (2)

Tables Icon

Table 1 Material properties used in the simulation model [23].

Tables Icon

Table 2 Material properties used in the simulation model.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

p V = n R T ;
p 1 V 1 T 1 = p 0 V 0 T 0
Δ V = β V Δ T ,

Metrics