Abstract

An integrated tunable microlens, whose focal length may be varied over a range of 3 to 15 mm with total power consumption below 250 mW, is presented. Using thermo-pneumatic actuation, this adaptive optical microsystem is completely integrated and requires no external pressure controllers for operation. The lens system consists of a liquid-filled cavity bounded by a distensible polydimethyl-siloxane membrane and a separate thermal cavity with actuation and sensing elements, all fabricated using silicon, glass and polymers. Due to the physical separation of thermal actuators and lens body, temperature gradients in the lens optical aperture were below 4°C in the vertical and 0.2°C in the lateral directions. Optical characterization showed that the cutoff frequency of the optical transfer function, using a reference contrast of 0.2, varied from 30 lines/mm to 65 lines/mm over the tuning range, and a change in the numerical aperture from 0.067 to 0.333. Stable control of the focal length over a long time period using a simple electronic stabilization circuit was demonstrated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21, 304306 (2009).
    [CrossRef]
  2. W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y. H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34, 3214–3216 (2009).
    [CrossRef] [PubMed]
  3. . K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A: Pure and Appl. Opt. 10, 044012 (8pp) (2008).
    [CrossRef]
  4. H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782–4790 (2009).
    [CrossRef] [PubMed]
  5. H. W. Ren, D. Fox, P. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
    [CrossRef] [PubMed]
  6. H.W. Ren and S.T. Wua, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
    [CrossRef]
  7. A. Naumov, G. Love, M. Y. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4, 344–352 (1999).
    [CrossRef] [PubMed]
  8. D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance Fluidic Adaptive Lenses,” Appl. Opt. 43, 783–787 (2004).
    [CrossRef] [PubMed]
  9. N. T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicroflu. 4, 031501 (2010).
    [CrossRef]
  10. H. Yu, G. Zhou, H. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010).
    [CrossRef] [PubMed]
  11. S. Kuipera, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature camera,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [CrossRef]
  12. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. D. Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16, 8084–8093 (2008).
    [CrossRef] [PubMed]
  13. A. Werber, and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 16, 3238–3245 (2007).
  14. M. D. Volder, and D. Reynaerts, “Pneumatic and hydraulic microactuators: a review,” J. Micromech. Microeng. 20, 043001 (2010).
    [CrossRef]
  15. N. B. Justis, D. Y. Zhang, and Y.-H. Lo, “ Integrated dynamic fluidic lens system for in vivo biological imaging,” Engineering in Medicine and Biology Society,IEMBS ’04. 26th Annual International Conference of the IEEE, pp.1256–1259 (2004)
    [CrossRef] [PubMed]
  16. F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009).
    [CrossRef] [PubMed]
  17. Y. J. Yang, and H. H. Liao, “Development and characterization of thermopneumatic peristaltic micropumps,” J. Micromech. Microeng. 19, 025003 (2009).
    [CrossRef]
  18. A. Werber, and H. Zappe, “Thermo-pneumatically actuated, membrane-based micro-mirror devices,” J. Micromech. Microeng. 16, 2524531 (2006).
    [CrossRef]
  19. W. Wang, and J. Fang, “Design, fabrication and testing of a micromachined integrated tunable microlens,” J. Micromech. Microeng. 16, 1221–1226 (2006).
    [CrossRef]
  20. S. Sawano, K. Naka, A. Werber, H. Zappe, and S. Konishi, “Sealing method of PDMS as elastic material for MEMS,” in Proc. IEEE Conference on Micro Electro Mechanical Syst. 419 −422 (2008).
    [CrossRef]
  21. J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Anal. Chem. 75, 6544–6554 (2003).
    [CrossRef] [PubMed]
  22. G. P. Behrmann, and J. P. Bowen, “Influence of temperature on diffractive lens performance,” Appl. Opt. 32, 2483–2489 (1993).
    [CrossRef] [PubMed]
  23. . Y. A. Cengel, Heat transfer:a practical approach (2002) pp.860.
  24. H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sens. Actuators B Chem. 65, 190–192 (2000).
    [CrossRef]
  25. W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18, 12458–12469 (2010).
    [CrossRef] [PubMed]
  26. K. Handique, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping,” Anal. Chem. 73, 1831–1838 (2001).
    [CrossRef] [PubMed]
  27. P. Srinivasan, and S. M. Spearing, “Material Selection for Optimal Design of Thermally Actuated Pneumatic and Phase Change Microactuators,” JMEMS 18, 239–249 (2009).

2010

N. T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicroflu. 4, 031501 (2010).
[CrossRef]

H. Yu, G. Zhou, H. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010).
[CrossRef] [PubMed]

M. D. Volder, and D. Reynaerts, “Pneumatic and hydraulic microactuators: a review,” J. Micromech. Microeng. 20, 043001 (2010).
[CrossRef]

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18, 12458–12469 (2010).
[CrossRef] [PubMed]

2009

P. Srinivasan, and S. M. Spearing, “Material Selection for Optimal Design of Thermally Actuated Pneumatic and Phase Change Microactuators,” JMEMS 18, 239–249 (2009).

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009).
[CrossRef] [PubMed]

Y. J. Yang, and H. H. Liao, “Development and characterization of thermopneumatic peristaltic micropumps,” J. Micromech. Microeng. 19, 025003 (2009).
[CrossRef]

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21, 304306 (2009).
[CrossRef]

W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y. H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34, 3214–3216 (2009).
[CrossRef] [PubMed]

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782–4790 (2009).
[CrossRef] [PubMed]

2008

. K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A: Pure and Appl. Opt. 10, 044012 (8pp) (2008).
[CrossRef]

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. D. Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16, 8084–8093 (2008).
[CrossRef] [PubMed]

2007

A. Werber, and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 16, 3238–3245 (2007).

2006

A. Werber, and H. Zappe, “Thermo-pneumatically actuated, membrane-based micro-mirror devices,” J. Micromech. Microeng. 16, 2524531 (2006).
[CrossRef]

W. Wang, and J. Fang, “Design, fabrication and testing of a micromachined integrated tunable microlens,” J. Micromech. Microeng. 16, 1221–1226 (2006).
[CrossRef]

H. W. Ren, D. Fox, P. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
[CrossRef] [PubMed]

2005

H.W. Ren and S.T. Wua, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
[CrossRef]

2004

S. Kuipera, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature camera,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance Fluidic Adaptive Lenses,” Appl. Opt. 43, 783–787 (2004).
[CrossRef] [PubMed]

2003

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Anal. Chem. 75, 6544–6554 (2003).
[CrossRef] [PubMed]

2001

K. Handique, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping,” Anal. Chem. 73, 1831–1838 (2001).
[CrossRef] [PubMed]

2000

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sens. Actuators B Chem. 65, 190–192 (2000).
[CrossRef]

1999

A. Naumov, G. Love, M. Y. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4, 344–352 (1999).
[CrossRef] [PubMed]

1993

G. P. Behrmann, and J. P. Bowen, “Influence of temperature on diffractive lens performance,” Appl. Opt. 32, 2483–2489 (1993).
[CrossRef] [PubMed]

Aljasem, K.

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18, 12458–12469 (2010).
[CrossRef] [PubMed]

. K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A: Pure and Appl. Opt. 10, 044012 (8pp) (2008).
[CrossRef]

Anderson, P.

H. W. Ren, D. Fox, P. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
[CrossRef] [PubMed]

Behrmann, G. P.

G. P. Behrmann, and J. P. Bowen, “Influence of temperature on diffractive lens performance,” Appl. Opt. 32, 2483–2489 (1993).
[CrossRef] [PubMed]

Berdichevsky, Y.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance Fluidic Adaptive Lenses,” Appl. Opt. 43, 783–787 (2004).
[CrossRef] [PubMed]

Bowen, J. P.

G. P. Behrmann, and J. P. Bowen, “Influence of temperature on diffractive lens performance,” Appl. Opt. 32, 2483–2489 (1993).
[CrossRef] [PubMed]

Burke, D. T.

K. Handique, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping,” Anal. Chem. 73, 1831–1838 (2001).
[CrossRef] [PubMed]

Burns, M. A.

K. Handique, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping,” Anal. Chem. 73, 1831–1838 (2001).
[CrossRef] [PubMed]

Ceuninck, W. D.

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sens. Actuators B Chem. 65, 190–192 (2000).
[CrossRef]

Chau, F. S.

H. Yu, G. Zhou, H. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010).
[CrossRef] [PubMed]

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782–4790 (2009).
[CrossRef] [PubMed]

Cho, S. H.

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21, 304306 (2009).
[CrossRef]

W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y. H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34, 3214–3216 (2009).
[CrossRef] [PubMed]

Draheim, J.

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009).
[CrossRef] [PubMed]

Esch, H.

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sens. Actuators B Chem. 65, 190–192 (2000).
[CrossRef]

Fang, J.

W. Wang, and J. Fang, “Design, fabrication and testing of a micromachined integrated tunable microlens,” J. Micromech. Microeng. 16, 1221–1226 (2006).
[CrossRef]

Ferraro, P.

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. D. Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16, 8084–8093 (2008).
[CrossRef] [PubMed]

Finizio, A.

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. D. Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16, 8084–8093 (2008).
[CrossRef] [PubMed]

Fox, D.

H. W. Ren, D. Fox, P. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
[CrossRef] [PubMed]

Grilli, S.

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. D. Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16, 8084–8093 (2008).
[CrossRef] [PubMed]

Handique, K.

K. Handique, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping,” Anal. Chem. 73, 1831–1838 (2001).
[CrossRef] [PubMed]

Hendriks, B. H. W.

S. Kuipera, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature camera,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Huyberechts, G.

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sens. Actuators B Chem. 65, 190–192 (2000).
[CrossRef]

Johnson, D.

W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y. H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34, 3214–3216 (2009).
[CrossRef] [PubMed]

Justis, N.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance Fluidic Adaptive Lenses,” Appl. Opt. 43, 783–787 (2004).
[CrossRef] [PubMed]

Kamberger, R.

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009).
[CrossRef] [PubMed]

Kuipera, S.

S. Kuipera, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature camera,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Lee, F. W.

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782–4790 (2009).
[CrossRef] [PubMed]

Lee, J. N.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Anal. Chem. 75, 6544–6554 (2003).
[CrossRef] [PubMed]

Leung, H.

H. Yu, G. Zhou, H. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010).
[CrossRef] [PubMed]

Leung, H. M.

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782–4790 (2009).
[CrossRef] [PubMed]

Liao, H. H.

Y. J. Yang, and H. H. Liao, “Development and characterization of thermopneumatic peristaltic micropumps,” J. Micromech. Microeng. 19, 025003 (2009).
[CrossRef]

Lien, V.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance Fluidic Adaptive Lenses,” Appl. Opt. 43, 783–787 (2004).
[CrossRef] [PubMed]

Lo, Y. H.

W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y. H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34, 3214–3216 (2009).
[CrossRef] [PubMed]

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21, 304306 (2009).
[CrossRef]

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance Fluidic Adaptive Lenses,” Appl. Opt. 43, 783–787 (2004).
[CrossRef] [PubMed]

Loktev, M. Y.

A. Naumov, G. Love, M. Y. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4, 344–352 (1999).
[CrossRef] [PubMed]

Love, G.

A. Naumov, G. Love, M. Y. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4, 344–352 (1999).
[CrossRef] [PubMed]

Maes, G.

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sens. Actuators B Chem. 65, 190–192 (2000).
[CrossRef]

Manca, J.

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sens. Actuators B Chem. 65, 190–192 (2000).
[CrossRef]

Mastrangelo, C. H.

K. Handique, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping,” Anal. Chem. 73, 1831–1838 (2001).
[CrossRef] [PubMed]

Mertens, R.

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sens. Actuators B Chem. 65, 190–192 (2000).
[CrossRef]

Miccio, L.

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. D. Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16, 8084–8093 (2008).
[CrossRef] [PubMed]

Naumov, A.

A. Naumov, G. Love, M. Y. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4, 344–352 (1999).
[CrossRef] [PubMed]

Nguyen, N. T.

N. T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicroflu. 4, 031501 (2010).
[CrossRef]

Nicola, S. D.

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. D. Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16, 8084–8093 (2008).
[CrossRef] [PubMed]

Park, C.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Anal. Chem. 75, 6544–6554 (2003).
[CrossRef] [PubMed]

Qiao, W.

W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y. H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34, 3214–3216 (2009).
[CrossRef] [PubMed]

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21, 304306 (2009).
[CrossRef]

Ren, H. W.

H. W. Ren, D. Fox, P. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
[CrossRef] [PubMed]

Ren, H.W.

H.W. Ren and S.T. Wua, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
[CrossRef]

Reynaerts, D.

M. D. Volder, and D. Reynaerts, “Pneumatic and hydraulic microactuators: a review,” J. Micromech. Microeng. 20, 043001 (2010).
[CrossRef]

Schepper, L. D.

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sens. Actuators B Chem. 65, 190–192 (2000).
[CrossRef]

Schneider, F.

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009).
[CrossRef] [PubMed]

Seifert, A.

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18, 12458–12469 (2010).
[CrossRef] [PubMed]

. K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A: Pure and Appl. Opt. 10, 044012 (8pp) (2008).
[CrossRef]

Spearing, S. M.

P. Srinivasan, and S. M. Spearing, “Material Selection for Optimal Design of Thermally Actuated Pneumatic and Phase Change Microactuators,” JMEMS 18, 239–249 (2009).

Srinivasan, P.

P. Srinivasan, and S. M. Spearing, “Material Selection for Optimal Design of Thermally Actuated Pneumatic and Phase Change Microactuators,” JMEMS 18, 239–249 (2009).

Tsai, F. S.

W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y. H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34, 3214–3216 (2009).
[CrossRef] [PubMed]

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21, 304306 (2009).
[CrossRef]

Vespini, V.

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. D. Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16, 8084–8093 (2008).
[CrossRef] [PubMed]

Vladimirov, F.

A. Naumov, G. Love, M. Y. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4, 344–352 (1999).
[CrossRef] [PubMed]

Volder, M. D.

M. D. Volder, and D. Reynaerts, “Pneumatic and hydraulic microactuators: a review,” J. Micromech. Microeng. 20, 043001 (2010).
[CrossRef]

Waibel, P.

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009).
[CrossRef] [PubMed]

Wallrabe, U.

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009).
[CrossRef] [PubMed]

Wang, S. H.

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782–4790 (2009).
[CrossRef] [PubMed]

Wang, W.

W. Wang, and J. Fang, “Design, fabrication and testing of a micromachined integrated tunable microlens,” J. Micromech. Microeng. 16, 1221–1226 (2006).
[CrossRef]

Werber, A.

. K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A: Pure and Appl. Opt. 10, 044012 (8pp) (2008).
[CrossRef]

A. Werber, and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 16, 3238–3245 (2007).

A. Werber, and H. Zappe, “Thermo-pneumatically actuated, membrane-based micro-mirror devices,” J. Micromech. Microeng. 16, 2524531 (2006).
[CrossRef]

Whitesides, G. M.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Anal. Chem. 75, 6544–6554 (2003).
[CrossRef] [PubMed]

Wu, B.

H. W. Ren, D. Fox, P. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
[CrossRef] [PubMed]

Wu, S. T.

H. W. Ren, D. Fox, P. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
[CrossRef] [PubMed]

Wua, S.T.

H.W. Ren and S.T. Wua, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
[CrossRef]

Yan, H.

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21, 304306 (2009).
[CrossRef]

Yang, Y. J.

Y. J. Yang, and H. H. Liao, “Development and characterization of thermopneumatic peristaltic micropumps,” J. Micromech. Microeng. 19, 025003 (2009).
[CrossRef]

Yu, H.

H. Yu, G. Zhou, H. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010).
[CrossRef] [PubMed]

Yu, H. B.

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782–4790 (2009).
[CrossRef] [PubMed]

Zappe, H.

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18, 12458–12469 (2010).
[CrossRef] [PubMed]

. K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A: Pure and Appl. Opt. 10, 044012 (8pp) (2008).
[CrossRef]

A. Werber, and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 16, 3238–3245 (2007).

A. Werber, and H. Zappe, “Thermo-pneumatically actuated, membrane-based micro-mirror devices,” J. Micromech. Microeng. 16, 2524531 (2006).
[CrossRef]

Zhang, D. Y.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance Fluidic Adaptive Lenses,” Appl. Opt. 43, 783–787 (2004).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18, 12458–12469 (2010).
[CrossRef] [PubMed]

Zhou, G.

H. Yu, G. Zhou, H. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010).
[CrossRef] [PubMed]

Zhou, G. Y.

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782–4790 (2009).
[CrossRef] [PubMed]

Anal. Chem.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices,” Anal. Chem. 75, 6544–6554 (2003).
[CrossRef] [PubMed]

K. Handique, D. T. Burke, C. H. Mastrangelo, and M. A. Burns, “On-Chip Thermopneumatic Pressure for Discrete Drop Pumping,” Anal. Chem. 73, 1831–1838 (2001).
[CrossRef] [PubMed]

Appl. Opt.

G. P. Behrmann, and J. P. Bowen, “Influence of temperature on diffractive lens performance,” Appl. Opt. 32, 2483–2489 (1993).
[CrossRef] [PubMed]

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, “High-performance Fluidic Adaptive Lenses,” Appl. Opt. 43, 783–787 (2004).
[CrossRef] [PubMed]

A. Werber, and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 16, 3238–3245 (2007).

Appl. Phys. Lett.

S. Kuipera, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature camera,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

H.W. Ren and S.T. Wua, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
[CrossRef]

Biomicroflu.

N. T. Nguyen, “Micro-optofluidic lenses: A review,” Biomicroflu. 4, 031501 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

W. Qiao, F. S. Tsai, S. H. Cho, H. Yan, and Y. H. Lo, “Fluidic intraocular lens with a large accommodation range,” IEEE Photon. Technol. Lett. 21, 304306 (2009).
[CrossRef]

J. Micromech. Microeng.

M. D. Volder, and D. Reynaerts, “Pneumatic and hydraulic microactuators: a review,” J. Micromech. Microeng. 20, 043001 (2010).
[CrossRef]

Y. J. Yang, and H. H. Liao, “Development and characterization of thermopneumatic peristaltic micropumps,” J. Micromech. Microeng. 19, 025003 (2009).
[CrossRef]

A. Werber, and H. Zappe, “Thermo-pneumatically actuated, membrane-based micro-mirror devices,” J. Micromech. Microeng. 16, 2524531 (2006).
[CrossRef]

W. Wang, and J. Fang, “Design, fabrication and testing of a micromachined integrated tunable microlens,” J. Micromech. Microeng. 16, 1221–1226 (2006).
[CrossRef]

J. Opt. A: Pure and Appl. Opt.

. K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optic tunable probe for endoscopic optical coherence tomography,” J. Opt. A: Pure and Appl. Opt. 10, 044012 (8pp) (2008).
[CrossRef]

JMEMS

P. Srinivasan, and S. M. Spearing, “Material Selection for Optimal Design of Thermally Actuated Pneumatic and Phase Change Microactuators,” JMEMS 18, 239–249 (2009).

Opt. Express

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Highly flexible MTF measurement system for tunable micro lenses,” Opt. Express 18, 12458–12469 (2010).
[CrossRef] [PubMed]

F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17, 11813–11821 (2009).
[CrossRef] [PubMed]

H. B. Yu, G. Y. Zhou, F. S. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17, 4782–4790 (2009).
[CrossRef] [PubMed]

H. W. Ren, D. Fox, P. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
[CrossRef] [PubMed]

H. Yu, G. Zhou, H. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express 18, 9945–9954 (2010).
[CrossRef] [PubMed]

A. Naumov, G. Love, M. Y. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4, 344–352 (1999).
[CrossRef] [PubMed]

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. D. Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16, 8084–8093 (2008).
[CrossRef] [PubMed]

Opt. Lett.

W. Qiao, D. Johnson, F. S. Tsai, S. H. Cho, and Y. H. Lo, “Bio-inspired accommodating fluidic intraocular lens,” Opt. Lett. 34, 3214–3216 (2009).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

H. Esch, G. Huyberechts, R. Mertens, G. Maes, J. Manca, W. D. Ceuninck, and L. D. Schepper, “The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors,” Sens. Actuators B Chem. 65, 190–192 (2000).
[CrossRef]

Other

. Y. A. Cengel, Heat transfer:a practical approach (2002) pp.860.

N. B. Justis, D. Y. Zhang, and Y.-H. Lo, “ Integrated dynamic fluidic lens system for in vivo biological imaging,” Engineering in Medicine and Biology Society,IEMBS ’04. 26th Annual International Conference of the IEEE, pp.1256–1259 (2004)
[CrossRef] [PubMed]

S. Sawano, K. Naka, A. Werber, H. Zappe, and S. Konishi, “Sealing method of PDMS as elastic material for MEMS,” in Proc. IEEE Conference on Micro Electro Mechanical Syst. 419 −422 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic design of the thermally tunable lens, with the device dimensions shown. The lens cavity is filled with an optical liquid and the chambers of the thermal pump are filled with air. Thermal expansion of the air causes compression of the liquid and distension of the lens membrane, shown as a concave surface at the top of the structure.

Fig. 2
Fig. 2

AFM measurement results of PDMS surface quality. (a) non-etched front side of the PDMS membrane; (b) etched back side of the PDMS membrane

Fig. 3
Fig. 3

Fabrication of the support ring and heater element: (a) fabrication of the support ring by a standard casting process. (b) photo of the PDMS ring forming the lens cavity. (c) fabrication of the heater layer using a standard lift-off process for the heater and sensor structures. (d) photo of the heater layer.

Fig. 4
Fig. 4

Photograph of the integrated tunable microlens: the silicon wafer is mounted on the PDMS layer. The curvature of the distended lens is seen at the top.

Fig. 5
Fig. 5

Schematic of the temperature control unit. RS: reference resistor, RT: variable sensor resistor.

Fig. 6
Fig. 6

CAD model of the thermopneumatic tunable lens, consisting of a silicon chip, a PDMS layer, an optical liquid, a thermal pump, and a heating layer on a glass chip.

Fig. 7
Fig. 7

Temperature gradient in the lens body: (a) vertical direction and (b) radially, for a bias of 3 V applied to the heaters.

Fig. 8
Fig. 8

Measurement and simulation results of the temperature in the air cavities of the thermal pump

Fig. 9
Fig. 9

Characterization of sensor elements. (a) Resistance of 3 sensors of different geometric structure at room temperature after different annealing times at the same annealing temperature (250°C ) in air ambiance; (b) relationship between resistance and temperature after annealing

Fig. 10
Fig. 10

AFM measurements of the Pt surface (a) before annealing (b) after annealing, 100 min at 250°C

Fig. 11
Fig. 11

Vertical deformation S of the thermal pump as a function of voltage applied to the heaters.

Fig. 12
Fig. 12

Diagram of the back focal length and MTF measurement setup. An approximate point source at an infinite conjugate is generated by a multimode fiber and a collimator lens. A manually controlled microscope platform is used to fix the microlens under test. Objective lenses of different magnification are used for the variation of the image size of the focal point of the lens under test. A high quality CCD records the image.

Fig. 13
Fig. 13

Measured back focal length as a function of the applied voltage using the optical liquid FC40. The dashed line is an empirical fit through the back focal length data. The solid line is a linear fit through the corresponding temperature values.

Fig. 14
Fig. 14

Experimentally determined MTF curves of the thermo-pneumatically actuated lens at different temperature values and hence back focal lengths. The back focal lengths for a given temperature are determined from Fig. 13.

Fig. 15
Fig. 15

(a) Change of the focal length tuning characteristic due to the presence of bubbles in the liquid using immersion oil. (b) Variation of focal length without bubbles.

Fig. 16
Fig. 16

Images of an F target for different focal lengths

Tables (2)

Tables Icon

Table 1 Material properties used in the simulation model [23].

Tables Icon

Table 2 Material properties used in the simulation model.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

p V = n R T ;
p 1 V 1 T 1 = p 0 V 0 T 0
Δ V = β V Δ T ,

Metrics