Abstract

We have demonstrated an ultracompact buried heterostructure photonic crystal (PhC) laser, consisting of an InGaAsP-based active region (5.0 x 0.3 x 0.15 μm3) buried in an InP layer. By employing a buried heterostructure with an InP layer, we can greatly improve thermal resistance and carrier confinement. We therefore achieved a low threshold input power of 6.8 μW and a maximum output power in the output waveguide of −10.3 dBm by optical pumping. The output light is effectively coupled to the output waveguide with a high external differential quantum efficiency of 53%. We observed a clear eye opening for a 20-Gbit/s NRZ signal modulation with an absorbed input power of 175.2 μW, resulting in an energy cost of 8.76 fJ/bit. This is the smallest reported energy cost for any type of semiconductor laser.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
    [CrossRef]
  2. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
    [CrossRef]
  3. N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-power dissipation in a microprocessor,” Proc. 2004 Int. Workshop System Level Interconnect Prediction, Session Interconnect Anal. SoCs Microprocess., 7–13 (2004).
  4. L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,” IEEE Computer 35, 70–78 (2002).
    [CrossRef]
  5. S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar, “An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm CMOS,” IEEE International Solid-State Circuits Conference, 2007. ISSCC 2007. 98 – 589 (2007).
  6. http://www.itrs.net/Links/2007ITRS/Home2007.htm .
  7. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009).
    [CrossRef]
  8. T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85 C,” IEEE Photon. Technol. Lett. 21(16), 1154–1156 (2009).
    [CrossRef]
  9. K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 687–693 (2009).
    [CrossRef]
  10. Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1–12 (2009).
  11. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
    [CrossRef]
  12. M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” to appear in IET Circ. Dev. Syst.
  13. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006).
    [CrossRef] [PubMed]
  14. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
    [CrossRef] [PubMed]
  15. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
    [CrossRef]
  16. E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au–Au Surface-Activated Bonding and Its Application to Optical Microsensors With 3-D Structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
    [CrossRef]
  17. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
    [CrossRef]
  18. M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16(23), 18657–18666 (2008).
    [CrossRef]
  19. T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
    [CrossRef] [PubMed]
  20. C.M. Long, A.V. Giannopoulos, and K.D. Choquette, “Photonic Crystal Band Edge Diode light Emitters,” Proceedings of Indium Phosphide and Related Materials 2009 ThA2.3, 399–402 (2009).

2010

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

2009

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au–Au Surface-Activated Bonding and Its Application to Optical Microsensors With 3-D Structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[CrossRef]

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85 C,” IEEE Photon. Technol. Lett. 21(16), 1154–1156 (2009).
[CrossRef]

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 687–693 (2009).
[CrossRef]

Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1–12 (2009).

2008

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[CrossRef]

M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16(23), 18657–18666 (2008).
[CrossRef]

2007

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

2006

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006).
[CrossRef] [PubMed]

2002

L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,” IEEE Computer 35, 70–78 (2002).
[CrossRef]

Arai, S.

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

Arakawa, Y.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006).
[CrossRef] [PubMed]

Baba, T.

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
[CrossRef] [PubMed]

Benini, L.

L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,” IEEE Computer 35, 70–78 (2002).
[CrossRef]

Bergman, K.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[CrossRef]

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[CrossRef]

Chang, Y.-C.

Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1–12 (2009).

Chino, D.

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au–Au Surface-Activated Bonding and Its Application to Optical Microsensors With 3-D Structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[CrossRef]

Coldren, L. A.

Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1–12 (2009).

De Micheli, G.

L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,” IEEE Computer 35, 70–78 (2002).
[CrossRef]

Ekawa, M.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 687–693 (2009).
[CrossRef]

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Higurashi, E.

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au–Au Surface-Activated Bonding and Its Application to Optical Microsensors With 3-D Structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[CrossRef]

Ide, S.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 687–693 (2009).
[CrossRef]

Ishida, S.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006).
[CrossRef] [PubMed]

Ito, H.

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

Iwamoto, S.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006).
[CrossRef] [PubMed]

Kakitsuka, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Kano, F.

T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85 C,” IEEE Photon. Technol. Lett. 21(16), 1154–1156 (2009).
[CrossRef]

Kawaguchi, Y.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Kishi, K.

T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85 C,” IEEE Photon. Technol. Lett. 21(16), 1154–1156 (2009).
[CrossRef]

Kita, S.

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
[CrossRef] [PubMed]

Kondo, D.

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

Kondo, Y.

T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85 C,” IEEE Photon. Technol. Lett. 21(16), 1154–1156 (2009).
[CrossRef]

Kumagai, N.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006).
[CrossRef] [PubMed]

Kuramochi, E.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” to appear in IET Circ. Dev. Syst.

Kurokawa, M.

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

Maruyama, T.

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

Matsuda, M.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 687–693 (2009).
[CrossRef]

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” to appear in IET Circ. Dev. Syst.

Miller, D. A. B.

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

Mori, K.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 687–693 (2009).
[CrossRef]

Nakata, Y.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006).
[CrossRef] [PubMed]

Nishiyama, N.

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

Nomura, M.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006).
[CrossRef] [PubMed]

Notomi, M.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16(23), 18657–18666 (2008).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” to appear in IET Circ. Dev. Syst.

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” to appear in IET Circ. Dev. Syst.

Okumura, S.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 687–693 (2009).
[CrossRef]

Okumura, T.

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

Oohashi, H.

T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85 C,” IEEE Photon. Technol. Lett. 21(16), 1154–1156 (2009).
[CrossRef]

Otsubo, K.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 687–693 (2009).
[CrossRef]

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” to appear in IET Circ. Dev. Syst.

Sawada, R.

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au–Au Surface-Activated Bonding and Its Application to Optical Microsensors With 3-D Structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[CrossRef]

Segawa, T.

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[CrossRef]

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” to appear in IET Circ. Dev. Syst.

Shirao, M.

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

Suga, T.

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au–Au Surface-Activated Bonding and Its Application to Optical Microsensors With 3-D Structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[CrossRef]

Sumikura, H.

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” to appear in IET Circ. Dev. Syst.

Tadokoro, T.

T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85 C,” IEEE Photon. Technol. Lett. 21(16), 1154–1156 (2009).
[CrossRef]

Takada, K.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 687–693 (2009).
[CrossRef]

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” to appear in IET Circ. Dev. Syst.

Tanaka, H.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 687–693 (2009).
[CrossRef]

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16(23), 18657–18666 (2008).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” to appear in IET Circ. Dev. Syst.

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Watanabe, K.

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006).
[CrossRef] [PubMed]

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Yamamoto, T.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 687–693 (2009).
[CrossRef]

Yamanaka, T.

T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85 C,” IEEE Photon. Technol. Lett. 21(16), 1154–1156 (2009).
[CrossRef]

IEEE Computer

L. Benini and G. De Micheli, “Networks on chips: a new SoC paradigm,” IEEE Computer 35, 70–78 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto, “1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 687–693 (2009).
[CrossRef]

Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15(3), 1–12 (2009).

E. Higurashi, D. Chino, T. Suga, and R. Sawada, “Au–Au Surface-Activated Bonding and Its Application to Optical Microsensors With 3-D Structure,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1500–1505 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi, “Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85 C,” IEEE Photon. Technol. Lett. 21(16), 1154–1156 (2009).
[CrossRef]

IEEE Trans. Comput.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[CrossRef]

Nat. Photonics

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[CrossRef]

Opt. Express

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308–6315 (2006).
[CrossRef] [PubMed]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007).
[CrossRef] [PubMed]

M. Notomi and H. Taniyama, “On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning,” Opt. Express 16(23), 18657–18666 (2008).
[CrossRef]

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

Proc. IEEE

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

Other

C.M. Long, A.V. Giannopoulos, and K.D. Choquette, “Photonic Crystal Band Edge Diode light Emitters,” Proceedings of Indium Phosphide and Related Materials 2009 ThA2.3, 399–402 (2009).

M. Notomi, A. Shinya, K. Nozaki, T. Tanabe, S. Matsuo, E. Kuramochi, T. Sato, H. Taniyama, and H. Sumikura, “Low power nanophotonic devices based on photonic crystals towards dense photonic network on chip,” to appear in IET Circ. Dev. Syst.

N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-power dissipation in a microprocessor,” Proc. 2004 Int. Workshop System Level Interconnect Prediction, Session Interconnect Anal. SoCs Microprocess., 7–13 (2004).

S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar, “An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm CMOS,” IEEE International Solid-State Circuits Conference, 2007. ISSCC 2007. 98 – 589 (2007).

http://www.itrs.net/Links/2007ITRS/Home2007.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of photonic network chip integrated with multi-core processor. Each photonic switch based on photonic crystal technologies consists of micro-lasers, photodetectors, switches and filters.

Fig. 2
Fig. 2

(a) Schematic diagram of buried heterostructure photonic crystal nanocavity laser. An extremely small active region is buried in a straight-line defect waveguide in an InP-PhC slab. (b) Cross-sectional view of active region. (c) Scanning electron micrograph image of the fabricated BH-PhC laser with an air-bridge structure.

Fig. 3
Fig. 3

Mode profiles calculated by the FDTD method. The active region is inside the line-defect waveguide (a) without an output waveguide and (b) with an output waveguide. Calculated mode profiles (c) without output waveguide, (d) with output waveguide for Woffset = 3a, and (e) with output waveguide for Woffset = 4a, where a is lattice constant.

Fig. 4
Fig. 4

Cross-sectional SEM image of the fabricated BH-PhC laser. The active region was slightly etched after cleaving the device to obtain a SEM image. The active region, consisting of 3 quantum wells, was buried in an InP layer.

Fig. 5
Fig. 5

(a) Light-in versus light-out (LL) characteristics and external differential quantum efficiency of near threshold region on a linear scale for the device with offset 3a. (b) LL characteristics for the device with offsets 3a (red line) and 4a (blue line).

Fig. 6
Fig. 6

(a) Experimental setup for direct modulation. Eye diagrams for (b) 15 Gbit/s and (c) 20 Gbit/s NRZ signals.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ω R 2 = v g g N p τ p = v g g h v η i ( P P t h ) V ,

Metrics