Abstract

An electrically waveform controllable optical chopper based on holographic polymer dispersed liquid crystal grating (H-PDLC) is presented in this paper. The theoretical analyses and experimental results show that the proposed optical chopper has following merits: (1) controllable waveform, (2) no mechanical motion induced vibrational noise, and (3) multiple-channel integration capability. The application of this unique electrically controllable optical chopper to frequency division multiplexed fluorescent microscopy is also addressed in this paper, which has the potential to increase the channel capacity, the stability and the reliability. This will be beneficial to the parallel detection, especially for dynamic studies of living biological samples.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Wu, X. Q. Zhang, J. Y. Cheung, K. B. Shi, Z. W. Liu, C. Luo, S. Yin, and P. Ruffin, “Frequency division multiplexed multichannel high-speed fluorescence confocal microscope,” Biophys. J. 91(6), 2290–2296 (2006).
    [CrossRef] [PubMed]
  2. J. Pawley, Handbook of Biological Confocal Microscopy (Plenum Press, 1989).
  3. S. Yin, G. Lu, J. Zhang, F. T. S. Yu, and J. N. Mait, “Kinoform-based Nipkow disk for a confocal microscope,” Appl. Opt. 34(25), 5695–5698 (1995).
    [CrossRef] [PubMed]
  4. T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 (2002).
    [CrossRef] [PubMed]
  5. K. Fujita, O. Nakanura, T. Kaneko, and M. Oyamada, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000).
    [CrossRef]
  6. A. Deniset-Besseau, S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, “Three-dimensional time-resolved fluorescence imaging by multifocal multiphoton microscopy for a photosensitizer study in living cells,” Appl. Opt. 46(33), 8045–8051 (2007).
    [CrossRef] [PubMed]
  7. S. H. Jiang and J. Walker, “Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy,” Appl. Opt. 49(3), 497–504 (2010).
    [CrossRef] [PubMed]
  8. K. B. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
    [CrossRef]
  9. L. Fu, X. S. Gan, and M. Gu, “Characterization of gradient-index lens-fiber spacing toward applications in two-photon fluorescence endoscopy,” Appl. Opt. 44(34), 7270–7274 (2005).
    [CrossRef] [PubMed]
  10. H. Kikuchi, T. Fujii, M. Kawakita, Y. Hirano, H. Fujikake, F. Sato, and K. Takizawa, “High-definition imaging system based on spatial light modulators with light-scattering mode,” Appl. Opt. 43(1), 132–142 (2004).
    [CrossRef] [PubMed]
  11. L. H. Domash, G. P. Crawford, and A. C. Ashmead, “Holographic PDLC for Photonic Applications,” Proc. SPIE 4107, 46–58 (2000).
    [CrossRef]
  12. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5(10), 1533–1538 (1993).
    [CrossRef]
  13. Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. Optoelectron. 2008, 1–53 (2008).
    [CrossRef]
  14. N. S. Claxton, T. J. Fellers, and M. W. Davidson, “Laser scanning confocal microscopy”, www.olympusfluoview.com/theory/LSCMIntro.pdf , (2010).

2010 (1)

S. H. Jiang and J. Walker, “Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy,” Appl. Opt. 49(3), 497–504 (2010).
[CrossRef] [PubMed]

2008 (1)

Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. Optoelectron. 2008, 1–53 (2008).
[CrossRef]

2007 (1)

A. Deniset-Besseau, S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, “Three-dimensional time-resolved fluorescence imaging by multifocal multiphoton microscopy for a photosensitizer study in living cells,” Appl. Opt. 46(33), 8045–8051 (2007).
[CrossRef] [PubMed]

2006 (2)

K. B. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[CrossRef]

F. Wu, X. Q. Zhang, J. Y. Cheung, K. B. Shi, Z. W. Liu, C. Luo, S. Yin, and P. Ruffin, “Frequency division multiplexed multichannel high-speed fluorescence confocal microscope,” Biophys. J. 91(6), 2290–2296 (2006).
[CrossRef] [PubMed]

2005 (1)

L. Fu, X. S. Gan, and M. Gu, “Characterization of gradient-index lens-fiber spacing toward applications in two-photon fluorescence endoscopy,” Appl. Opt. 44(34), 7270–7274 (2005).
[CrossRef] [PubMed]

2004 (1)

H. Kikuchi, T. Fujii, M. Kawakita, Y. Hirano, H. Fujikake, F. Sato, and K. Takizawa, “High-definition imaging system based on spatial light modulators with light-scattering mode,” Appl. Opt. 43(1), 132–142 (2004).
[CrossRef] [PubMed]

2002 (1)

T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 (2002).
[CrossRef] [PubMed]

2000 (2)

K. Fujita, O. Nakanura, T. Kaneko, and M. Oyamada, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000).
[CrossRef]

L. H. Domash, G. P. Crawford, and A. C. Ashmead, “Holographic PDLC for Photonic Applications,” Proc. SPIE 4107, 46–58 (2000).
[CrossRef]

1995 (1)

S. Yin, G. Lu, J. Zhang, F. T. S. Yu, and J. N. Mait, “Kinoform-based Nipkow disk for a confocal microscope,” Appl. Opt. 34(25), 5695–5698 (1995).
[CrossRef] [PubMed]

1993 (1)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5(10), 1533–1538 (1993).
[CrossRef]

Ashmead, A. C.

L. H. Domash, G. P. Crawford, and A. C. Ashmead, “Holographic PDLC for Photonic Applications,” Proc. SPIE 4107, 46–58 (2000).
[CrossRef]

Bunning, T. J.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5(10), 1533–1538 (1993).
[CrossRef]

Cheung, J. Y.

F. Wu, X. Q. Zhang, J. Y. Cheung, K. B. Shi, Z. W. Liu, C. Luo, S. Yin, and P. Ruffin, “Frequency division multiplexed multichannel high-speed fluorescence confocal microscope,” Biophys. J. 91(6), 2290–2296 (2006).
[CrossRef] [PubMed]

Crawford, G. P.

L. H. Domash, G. P. Crawford, and A. C. Ashmead, “Holographic PDLC for Photonic Applications,” Proc. SPIE 4107, 46–58 (2000).
[CrossRef]

Deniset-Besseau, A.

A. Deniset-Besseau, S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, “Three-dimensional time-resolved fluorescence imaging by multifocal multiphoton microscopy for a photosensitizer study in living cells,” Appl. Opt. 46(33), 8045–8051 (2007).
[CrossRef] [PubMed]

Domash, L. H.

L. H. Domash, G. P. Crawford, and A. C. Ashmead, “Holographic PDLC for Photonic Applications,” Proc. SPIE 4107, 46–58 (2000).
[CrossRef]

Fontaine-Aupart, M. P.

A. Deniset-Besseau, S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, “Three-dimensional time-resolved fluorescence imaging by multifocal multiphoton microscopy for a photosensitizer study in living cells,” Appl. Opt. 46(33), 8045–8051 (2007).
[CrossRef] [PubMed]

Fu, L.

L. Fu, X. S. Gan, and M. Gu, “Characterization of gradient-index lens-fiber spacing toward applications in two-photon fluorescence endoscopy,” Appl. Opt. 44(34), 7270–7274 (2005).
[CrossRef] [PubMed]

Fujii, T.

H. Kikuchi, T. Fujii, M. Kawakita, Y. Hirano, H. Fujikake, F. Sato, and K. Takizawa, “High-definition imaging system based on spatial light modulators with light-scattering mode,” Appl. Opt. 43(1), 132–142 (2004).
[CrossRef] [PubMed]

Fujikake, H.

H. Kikuchi, T. Fujii, M. Kawakita, Y. Hirano, H. Fujikake, F. Sato, and K. Takizawa, “High-definition imaging system based on spatial light modulators with light-scattering mode,” Appl. Opt. 43(1), 132–142 (2004).
[CrossRef] [PubMed]

Fujita, K.

K. Fujita, O. Nakanura, T. Kaneko, and M. Oyamada, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000).
[CrossRef]

Gan, X. S.

L. Fu, X. S. Gan, and M. Gu, “Characterization of gradient-index lens-fiber spacing toward applications in two-photon fluorescence endoscopy,” Appl. Opt. 44(34), 7270–7274 (2005).
[CrossRef] [PubMed]

Georges, P.

A. Deniset-Besseau, S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, “Three-dimensional time-resolved fluorescence imaging by multifocal multiphoton microscopy for a photosensitizer study in living cells,” Appl. Opt. 46(33), 8045–8051 (2007).
[CrossRef] [PubMed]

Gu, M.

L. Fu, X. S. Gan, and M. Gu, “Characterization of gradient-index lens-fiber spacing toward applications in two-photon fluorescence endoscopy,” Appl. Opt. 44(34), 7270–7274 (2005).
[CrossRef] [PubMed]

Hirano, Y.

H. Kikuchi, T. Fujii, M. Kawakita, Y. Hirano, H. Fujikake, F. Sato, and K. Takizawa, “High-definition imaging system based on spatial light modulators with light-scattering mode,” Appl. Opt. 43(1), 132–142 (2004).
[CrossRef] [PubMed]

Ishida, H.

T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 (2002).
[CrossRef] [PubMed]

Jiang, S. H.

S. H. Jiang and J. Walker, “Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy,” Appl. Opt. 49(3), 497–504 (2010).
[CrossRef] [PubMed]

Kaneko, T.

K. Fujita, O. Nakanura, T. Kaneko, and M. Oyamada, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000).
[CrossRef]

Kawakita, M.

H. Kikuchi, T. Fujii, M. Kawakita, Y. Hirano, H. Fujikake, F. Sato, and K. Takizawa, “High-definition imaging system based on spatial light modulators with light-scattering mode,” Appl. Opt. 43(1), 132–142 (2004).
[CrossRef] [PubMed]

Kikuchi, H.

H. Kikuchi, T. Fujii, M. Kawakita, Y. Hirano, H. Fujikake, F. Sato, and K. Takizawa, “High-definition imaging system based on spatial light modulators with light-scattering mode,” Appl. Opt. 43(1), 132–142 (2004).
[CrossRef] [PubMed]

Kosugi, Y.

T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 (2002).
[CrossRef] [PubMed]

Lévêque-Fort, S.

A. Deniset-Besseau, S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, “Three-dimensional time-resolved fluorescence imaging by multifocal multiphoton microscopy for a photosensitizer study in living cells,” Appl. Opt. 46(33), 8045–8051 (2007).
[CrossRef] [PubMed]

Li, P.

K. B. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[CrossRef]

Liu, Y. J.

Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. Optoelectron. 2008, 1–53 (2008).
[CrossRef]

Liu, Z.

K. B. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[CrossRef]

Liu, Z. W.

F. Wu, X. Q. Zhang, J. Y. Cheung, K. B. Shi, Z. W. Liu, C. Luo, S. Yin, and P. Ruffin, “Frequency division multiplexed multichannel high-speed fluorescence confocal microscope,” Biophys. J. 91(6), 2290–2296 (2006).
[CrossRef] [PubMed]

Lu, G.

S. Yin, G. Lu, J. Zhang, F. T. S. Yu, and J. N. Mait, “Kinoform-based Nipkow disk for a confocal microscope,” Appl. Opt. 34(25), 5695–5698 (1995).
[CrossRef] [PubMed]

Luo, C.

F. Wu, X. Q. Zhang, J. Y. Cheung, K. B. Shi, Z. W. Liu, C. Luo, S. Yin, and P. Ruffin, “Frequency division multiplexed multichannel high-speed fluorescence confocal microscope,” Biophys. J. 91(6), 2290–2296 (2006).
[CrossRef] [PubMed]

Mait, J. N.

S. Yin, G. Lu, J. Zhang, F. T. S. Yu, and J. N. Mait, “Kinoform-based Nipkow disk for a confocal microscope,” Appl. Opt. 34(25), 5695–5698 (1995).
[CrossRef] [PubMed]

Nakanura, O.

K. Fujita, O. Nakanura, T. Kaneko, and M. Oyamada, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000).
[CrossRef]

Nam, S. H.

K. B. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[CrossRef]

Natarajan, L. V.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5(10), 1533–1538 (1993).
[CrossRef]

Otsuki, S.

T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 (2002).
[CrossRef] [PubMed]

Oyamada, M.

K. Fujita, O. Nakanura, T. Kaneko, and M. Oyamada, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000).
[CrossRef]

Roger, G.

A. Deniset-Besseau, S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, “Three-dimensional time-resolved fluorescence imaging by multifocal multiphoton microscopy for a photosensitizer study in living cells,” Appl. Opt. 46(33), 8045–8051 (2007).
[CrossRef] [PubMed]

Ruffin, P.

F. Wu, X. Q. Zhang, J. Y. Cheung, K. B. Shi, Z. W. Liu, C. Luo, S. Yin, and P. Ruffin, “Frequency division multiplexed multichannel high-speed fluorescence confocal microscope,” Biophys. J. 91(6), 2290–2296 (2006).
[CrossRef] [PubMed]

Sato, F.

H. Kikuchi, T. Fujii, M. Kawakita, Y. Hirano, H. Fujikake, F. Sato, and K. Takizawa, “High-definition imaging system based on spatial light modulators with light-scattering mode,” Appl. Opt. 43(1), 132–142 (2004).
[CrossRef] [PubMed]

Shi, K. B.

F. Wu, X. Q. Zhang, J. Y. Cheung, K. B. Shi, Z. W. Liu, C. Luo, S. Yin, and P. Ruffin, “Frequency division multiplexed multichannel high-speed fluorescence confocal microscope,” Biophys. J. 91(6), 2290–2296 (2006).
[CrossRef] [PubMed]

K. B. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[CrossRef]

Shimizu, M.

T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 (2002).
[CrossRef] [PubMed]

Sun, X. W.

Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. Optoelectron. 2008, 1–53 (2008).
[CrossRef]

Sutherland, R. L.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5(10), 1533–1538 (1993).
[CrossRef]

Takizawa, K.

H. Kikuchi, T. Fujii, M. Kawakita, Y. Hirano, H. Fujikake, F. Sato, and K. Takizawa, “High-definition imaging system based on spatial light modulators with light-scattering mode,” Appl. Opt. 43(1), 132–142 (2004).
[CrossRef] [PubMed]

Tanaami, T.

T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 (2002).
[CrossRef] [PubMed]

Tomosada, N.

T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 (2002).
[CrossRef] [PubMed]

Tondiglia, V. P.

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5(10), 1533–1538 (1993).
[CrossRef]

Walker, J.

S. H. Jiang and J. Walker, “Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy,” Appl. Opt. 49(3), 497–504 (2010).
[CrossRef] [PubMed]

Wu, F.

F. Wu, X. Q. Zhang, J. Y. Cheung, K. B. Shi, Z. W. Liu, C. Luo, S. Yin, and P. Ruffin, “Frequency division multiplexed multichannel high-speed fluorescence confocal microscope,” Biophys. J. 91(6), 2290–2296 (2006).
[CrossRef] [PubMed]

Yin, S.

F. Wu, X. Q. Zhang, J. Y. Cheung, K. B. Shi, Z. W. Liu, C. Luo, S. Yin, and P. Ruffin, “Frequency division multiplexed multichannel high-speed fluorescence confocal microscope,” Biophys. J. 91(6), 2290–2296 (2006).
[CrossRef] [PubMed]

K. B. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[CrossRef]

S. Yin, G. Lu, J. Zhang, F. T. S. Yu, and J. N. Mait, “Kinoform-based Nipkow disk for a confocal microscope,” Appl. Opt. 34(25), 5695–5698 (1995).
[CrossRef] [PubMed]

Yu, F. T. S.

S. Yin, G. Lu, J. Zhang, F. T. S. Yu, and J. N. Mait, “Kinoform-based Nipkow disk for a confocal microscope,” Appl. Opt. 34(25), 5695–5698 (1995).
[CrossRef] [PubMed]

Zhang, J.

S. Yin, G. Lu, J. Zhang, F. T. S. Yu, and J. N. Mait, “Kinoform-based Nipkow disk for a confocal microscope,” Appl. Opt. 34(25), 5695–5698 (1995).
[CrossRef] [PubMed]

Zhang, X. Q.

F. Wu, X. Q. Zhang, J. Y. Cheung, K. B. Shi, Z. W. Liu, C. Luo, S. Yin, and P. Ruffin, “Frequency division multiplexed multichannel high-speed fluorescence confocal microscope,” Biophys. J. 91(6), 2290–2296 (2006).
[CrossRef] [PubMed]

Adv. Optoelectron. (1)

Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. Optoelectron. 2008, 1–53 (2008).
[CrossRef]

Appl. Opt. (6)

S. Yin, G. Lu, J. Zhang, F. T. S. Yu, and J. N. Mait, “Kinoform-based Nipkow disk for a confocal microscope,” Appl. Opt. 34(25), 5695–5698 (1995).
[CrossRef] [PubMed]

T. Tanaami, S. Otsuki, N. Tomosada, Y. Kosugi, M. Shimizu, and H. Ishida, “High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks,” Appl. Opt. 41(22), 4704–4708 (2002).
[CrossRef] [PubMed]

A. Deniset-Besseau, S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, “Three-dimensional time-resolved fluorescence imaging by multifocal multiphoton microscopy for a photosensitizer study in living cells,” Appl. Opt. 46(33), 8045–8051 (2007).
[CrossRef] [PubMed]

S. H. Jiang and J. Walker, “Differential high-speed digital micromirror device based fluorescence speckle confocal microscopy,” Appl. Opt. 49(3), 497–504 (2010).
[CrossRef] [PubMed]

L. Fu, X. S. Gan, and M. Gu, “Characterization of gradient-index lens-fiber spacing toward applications in two-photon fluorescence endoscopy,” Appl. Opt. 44(34), 7270–7274 (2005).
[CrossRef] [PubMed]

H. Kikuchi, T. Fujii, M. Kawakita, Y. Hirano, H. Fujikake, F. Sato, and K. Takizawa, “High-definition imaging system based on spatial light modulators with light-scattering mode,” Appl. Opt. 43(1), 132–142 (2004).
[CrossRef] [PubMed]

Biophys. J. (1)

F. Wu, X. Q. Zhang, J. Y. Cheung, K. B. Shi, Z. W. Liu, C. Luo, S. Yin, and P. Ruffin, “Frequency division multiplexed multichannel high-speed fluorescence confocal microscope,” Biophys. J. 91(6), 2290–2296 (2006).
[CrossRef] [PubMed]

Chem. Mater. (1)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,” Chem. Mater. 5(10), 1533–1538 (1993).
[CrossRef]

Opt. Commun. (2)

K. Fujita, O. Nakanura, T. Kaneko, and M. Oyamada, “Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays,” Opt. Commun. 174(1-4), 7–12 (2000).
[CrossRef]

K. B. Shi, S. H. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun. 263(2), 156–162 (2006).
[CrossRef]

Proc. SPIE (1)

L. H. Domash, G. P. Crawford, and A. C. Ashmead, “Holographic PDLC for Photonic Applications,” Proc. SPIE 4107, 46–58 (2000).
[CrossRef]

Other (2)

J. Pawley, Handbook of Biological Confocal Microscopy (Plenum Press, 1989).

N. S. Claxton, T. J. Fellers, and M. W. Davidson, “Laser scanning confocal microscopy”, www.olympusfluoview.com/theory/LSCMIntro.pdf , (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

An illustration of basic principle of H-PDLC chopper.

Fig. 2
Fig. 2

H-PDLC chopper with square waveform is working with vary frequencies and different duty ratio; (a) 50Hz 1:3; (b) 100Hz 1:1; (c) 200Hz 1:1; (d) 50Hz 1:3; (e) 200Hz 4:1; (f) 200Hz 1:4.

Fig. 3
Fig. 3

H-PDLC chopper with triangle waveform is working with various duty cycles; (a) 27Hz 25ms/unit; (b) 40Hz 25ms/unit; (c) 100Hz 10ms/unit; (d) 27 Hz 25ms/unit (diffraction beam).

Fig. 4
Fig. 4

H-PDLC chopper with sinusoidal waveform is working with different periods; (a) 50Hz 10ms/unit; (b) 25Hz 10ms/unit; (c) 28Hz 25ms/unit.

Fig. 5
Fig. 5

Experimental results of H-PDLC chopper working with sawtooth waveform modulation; (a) 10Hz 100ms/unit; (b) 8.3Hz 50ms/unit; (c) 10Hz 50ms/unit.

Fig. 6
Fig. 6

Two-channel H-PDLC choppers array generate different waveform modulation; (a) 50 Hz and 100Hz square waveform; (b) 50Hz square and 100Hz triangle waveform; (c) 50Hz and 25Hz sinusoidal waveform.

Fig. 7
Fig. 7

An illustration of two-channel modulation in a FDMF microscopy.

Fig. 8
Fig. 8

The imaging pictures of rat neural cells taken by a FDMF microscope.

Fig. 9
Fig. 9

The data processing of FDMF microscopy with H-PDLC chopper at 50Hz and 100 Hz; (a) Simulation of beating signal; (b) Experimental signal; (c) Sum intensity in frequency domain; (d) demodulation of fluorescence emission from two points.

Metrics