Abstract

Based on the finite-difference time-domain method, we investigate the transmission resonances of compound metallic gratings with two subwavelength slits filled with different dielectrics inside each period in the visible and near infrared regions. The results show that the transmission spectrum is almost a compound of that of two corresponding simple gratings expect for the transmission feature at a certain resonant wavelength, where the Fabry-Pérot (FP)-like phenomena have been found both inside the two slits, but the orders of the FP-like modes are different. If the order of the FP-like mode inside one slit is one bigger than inside the other, the intensity of the transmission will be significantly weakened. We attribute this phenomenon to the phase resonance because the phases at the exits of the two slits are opposite to each other.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonance on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [CrossRef]
  3. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express 13(12), 4485–4491 (2005).
    [CrossRef] [PubMed]
  4. X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Pérot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).
    [CrossRef]
  5. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
    [CrossRef] [PubMed]
  6. L. Moreno and F. J. García-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Express 12(16), 3619–3628 (2004).
    [CrossRef] [PubMed]
  7. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
    [CrossRef] [PubMed]
  8. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76(19), 195414 (2007).
    [CrossRef]
  9. D. C. Skigin and R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
    [CrossRef] [PubMed]
  10. D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structured gratings with subwavelength slits,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046606 (2006).
    [CrossRef] [PubMed]
  11. A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
    [CrossRef] [PubMed]
  12. Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, “Microwave transmission modes in compound metallic gratings,” Phys. Rev. B 76(8), 085413 (2007).
    [CrossRef]
  13. M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
    [CrossRef]
  14. J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. C. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
    [CrossRef] [PubMed]
  15. E. D. Palik, Handbook of Optical Constants and Solids (Academic, New York, 1985).
  16. S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B 68(4), 045415 (2003).
    [CrossRef]
  17. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [CrossRef]

2009 (2)

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. C. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
[CrossRef] [PubMed]

2007 (2)

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, “Microwave transmission modes in compound metallic gratings,” Phys. Rev. B 76(8), 085413 (2007).
[CrossRef]

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76(19), 195414 (2007).
[CrossRef]

2006 (4)

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structured gratings with subwavelength slits,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046606 (2006).
[CrossRef] [PubMed]

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

2005 (3)

D. C. Skigin and R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express 13(12), 4485–4491 (2005).
[CrossRef] [PubMed]

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Pérot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).
[CrossRef]

2004 (1)

L. Moreno and F. J. García-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Express 12(16), 3619–3628 (2004).
[CrossRef] [PubMed]

2003 (1)

S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B 68(4), 045415 (2003).
[CrossRef]

2002 (1)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

1999 (1)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonance on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Beruete, M.

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Chen, L.

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. C. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
[CrossRef] [PubMed]

Depine, R. A.

D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structured gratings with subwavelength slits,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046606 (2006).
[CrossRef] [PubMed]

D. C. Skigin and R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

García-Vidal, F. J.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76(19), 195414 (2007).
[CrossRef]

L. Moreno and F. J. García-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Express 12(16), 3619–3628 (2004).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonance on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gray, S. K.

S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B 68(4), 045415 (2003).
[CrossRef]

He, M. D.

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. C. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
[CrossRef] [PubMed]

Hibbins, A. P.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

Hooper, I. R.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

Jiao, X.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Pérot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).
[CrossRef]

Kupka, T.

S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B 68(4), 045415 (2003).
[CrossRef]

Lalanne, P.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, Q.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Pérot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).
[CrossRef]

Liu, J. Q.

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. C. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
[CrossRef] [PubMed]

Lockyear, M. J.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

Lu, Y.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Pérot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).
[CrossRef]

Ma, Y. G.

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, “Microwave transmission modes in compound metallic gratings,” Phys. Rev. B 76(8), 085413 (2007).
[CrossRef]

Mansuripur, M.

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express 13(12), 4485–4491 (2005).
[CrossRef] [PubMed]

Martin-Moreno, L.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76(19), 195414 (2007).
[CrossRef]

Mary, A.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76(19), 195414 (2007).
[CrossRef]

Ming, H.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Pérot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).
[CrossRef]

Moloney, J. V.

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express 13(12), 4485–4491 (2005).
[CrossRef] [PubMed]

Moreno, L.

L. Moreno and F. J. García-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Express 12(16), 3619–3628 (2004).
[CrossRef] [PubMed]

Navarro-Cía, M.

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

Ong, C. K.

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, “Microwave transmission modes in compound metallic gratings,” Phys. Rev. B 76(8), 085413 (2007).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonance on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonance on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Qiu, M.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Rao, X. S.

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, “Microwave transmission modes in compound metallic gratings,” Phys. Rev. B 76(8), 085413 (2007).
[CrossRef]

Rodrigo, S. G.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76(19), 195414 (2007).
[CrossRef]

Ruan, Z.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Sambles, J. R.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

Shao, Z.

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. C. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
[CrossRef] [PubMed]

Skigin, D. C.

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structured gratings with subwavelength slits,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046606 (2006).
[CrossRef] [PubMed]

D. C. Skigin and R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

Sorolla, M.

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Tang, L.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Pérot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wan, Q.

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. C. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
[CrossRef] [PubMed]

Wang, L. L.

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. C. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
[CrossRef] [PubMed]

Wang, P.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Pérot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).
[CrossRef]

Wen, S. C.

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. C. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Xie, J.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Pérot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).
[CrossRef]

Xie, Y.

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express 13(12), 4485–4491 (2005).
[CrossRef] [PubMed]

Yao, J.

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. C. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
[CrossRef] [PubMed]

Yao, P.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Pérot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).
[CrossRef]

Zakharian, A. R.

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express 13(12), 4485–4491 (2005).
[CrossRef] [PubMed]

Zhai, X.

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. C. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
[CrossRef] [PubMed]

Zhang, D.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Pérot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).
[CrossRef]

Zhang, G. F.

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, “Microwave transmission modes in compound metallic gratings,” Phys. Rev. B 76(8), 085413 (2007).
[CrossRef]

Zou, B. S.

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. C. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
[CrossRef] [PubMed]

Appl. Phys. B (1)

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, “Fabry–Pérot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits,” Appl. Phys. B 80(3), 301–305 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94(9), 091107 (2009).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (3)

L. Moreno and F. J. García-Vidal, “Optical transmission through circular hole arrays in optically thick metal films,” Opt. Express 12(16), 3619–3628 (2004).
[CrossRef] [PubMed]

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. C. Wen, L. Chen, Z. Shao, Q. Wan, B. S. Zou, and J. Yao, “Tailoring optical transmission via the arrangement of compound subwavelength hole arrays,” Opt. Express 17(3), 1859–1864 (2009).
[CrossRef] [PubMed]

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express 13(12), 4485–4491 (2005).
[CrossRef] [PubMed]

Phys. Rev. B (4)

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, “Microwave transmission modes in compound metallic gratings,” Phys. Rev. B 76(8), 085413 (2007).
[CrossRef]

S. K. Gray and T. Kupka, “Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders,” Phys. Rev. B 68(4), 045415 (2003).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. García-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76(19), 195414 (2007).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structured gratings with subwavelength slits,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046606 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006).
[CrossRef] [PubMed]

D. C. Skigin and R. A. Depine, “Transmission resonances of metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonance on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants and Solids (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics