Abstract

We describe a means for improving the coupling of illumination to, and the collection of scattered radiation from, an optical antenna. This is achieved by integrating optical antennas with concentric ring gratings. Electromagnetic simulations demonstrate that the ring grating improves the coupling to the antenna, even if the incident illumination is focused by an aplanatic lens such as a microscope objective. Dipole radiation from the center of the structure is well collimated. Various aspects of field enhancement and dipole radiation behavior are analyzed. We propose this device for Raman scattering enhancement.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Long, “Raman Spectroscopy,” McGraw-Hill, New York, 1977.
  2. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003).
    [CrossRef]
  3. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
    [CrossRef]
  4. N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91(17), 173113 (2007).
    [CrossRef]
  5. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [CrossRef] [PubMed]
  6. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  7. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
    [CrossRef] [PubMed]
  8. M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very low-profile “Bull’s Eye” feeder antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
    [CrossRef]
  9. K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, “Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture,” Jpn. J. Appl. Phys. 44(29), L929–L931 (2005).
    [CrossRef]
  10. K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
    [CrossRef]
  11. Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, “Localized Raman enhancement from a double-hole nanostructure in a metal film,” J. Phys. Chem. Lett. C 112(39), 15098–15101 (2008).
    [CrossRef]
  12. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef]
  13. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  14. D. Wang, T. Yang, and K. B. Crozier, “Charge and current reservoirs for electric and magnetic field enhancement,” Opt. Express 18(10), 10388–10394 (2010).
    [CrossRef] [PubMed]
  15. K. Sendur, W. Challener, and O. Mryasov, “Interaction of spherical nanoparticles with a highly focused beam of light,” Opt. Express 16(5), 2874–2886 (2008).
    [CrossRef] [PubMed]
  16. K. Sendur, “An integral equation based numerical solution for nanoparticles illuminated with collimated and focused light,” Opt. Express 17(9), 7419–7430 (2009).
    [CrossRef] [PubMed]
  17. K. Sendur and A. Sahinöz, “Interaction of radially polarized focused light with a prolate spheroidal nanoparticle,” Opt. Express 17(13), 10910–10925 (2009).
    [CrossRef] [PubMed]
  18. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  19. E. C. Le Ru and P. G. Ethchegoin, “Rigorous justification of the |E|4enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63 (2006).
    [CrossRef]
  20. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253358 (1959). [See also L. Novotny and B. Hecht, “Principles of nano-optics,” Cambridge, (2006)].
    [CrossRef]
  21. E. Bailo and V. Deckert, “Tip-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 921–930 (2008).
    [CrossRef] [PubMed]
  22. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
    [CrossRef] [PubMed]

2010 (1)

D. Wang, T. Yang, and K. B. Crozier, “Charge and current reservoirs for electric and magnetic field enhancement,” Opt. Express 18(10), 10388–10394 (2010).
[CrossRef] [PubMed]

2009 (2)

K. Sendur, “An integral equation based numerical solution for nanoparticles illuminated with collimated and focused light,” Opt. Express 17(9), 7419–7430 (2009).
[CrossRef] [PubMed]

K. Sendur and A. Sahinöz, “Interaction of radially polarized focused light with a prolate spheroidal nanoparticle,” Opt. Express 17(13), 10910–10925 (2009).
[CrossRef] [PubMed]

2008 (4)

K. Sendur, W. Challener, and O. Mryasov, “Interaction of spherical nanoparticles with a highly focused beam of light,” Opt. Express 16(5), 2874–2886 (2008).
[CrossRef] [PubMed]

Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, “Localized Raman enhancement from a double-hole nanostructure in a metal film,” J. Phys. Chem. Lett. C 112(39), 15098–15101 (2008).
[CrossRef]

E. Bailo and V. Deckert, “Tip-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 921–930 (2008).
[CrossRef] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[CrossRef] [PubMed]

2007 (1)

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91(17), 173113 (2007).
[CrossRef]

2006 (4)

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

E. C. Le Ru and P. G. Ethchegoin, “Rigorous justification of the |E|4enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63 (2006).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253358 (1959). [See also L. Novotny and B. Hecht, “Principles of nano-optics,” Cambridge, (2006)].
[CrossRef]

2005 (3)

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very low-profile “Bull’s Eye” feeder antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, “Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture,” Jpn. J. Appl. Phys. 44(29), L929–L931 (2005).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

2003 (3)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

1998 (1)

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Bailo, E.

E. Bailo and V. Deckert, “Tip-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 921–930 (2008).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Belkin, M. A.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91(17), 173113 (2007).
[CrossRef]

Beruete, M.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very low-profile “Bull’s Eye” feeder antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

Bour, D.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91(17), 173113 (2007).
[CrossRef]

Brolo, A. G.

Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, “Localized Raman enhancement from a double-hole nanostructure in a metal film,” J. Phys. Chem. Lett. C 112(39), 15098–15101 (2008).
[CrossRef]

Campillo, I.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very low-profile “Bull’s Eye” feeder antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

Capasso, F.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91(17), 173113 (2007).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

Challener, W.

K. Sendur, W. Challener, and O. Mryasov, “Interaction of spherical nanoparticles with a highly focused beam of light,” Opt. Express 16(5), 2874–2886 (2008).
[CrossRef] [PubMed]

Corzine, S.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91(17), 173113 (2007).
[CrossRef]

Crozier, K. B.

D. Wang, T. Yang, and K. B. Crozier, “Charge and current reservoirs for electric and magnetic field enhancement,” Opt. Express 18(10), 10388–10394 (2010).
[CrossRef] [PubMed]

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91(17), 173113 (2007).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003).
[CrossRef]

Cubukcu, E.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91(17), 173113 (2007).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

Deckert, V.

E. Bailo and V. Deckert, “Tip-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 921–930 (2008).
[CrossRef] [PubMed]

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Diehl, L.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91(17), 173113 (2007).
[CrossRef]

Djurisic, A. B.

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[CrossRef]

Dolado, J. S.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very low-profile “Bull’s Eye” feeder antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Elazar, J. M.

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[CrossRef]

Ethchegoin, P. G.

E. C. Le Ru and P. G. Ethchegoin, “Rigorous justification of the |E|4enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63 (2006).
[CrossRef]

Falcone, F.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very low-profile “Bull’s Eye” feeder antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Girotto, E. M.

Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, “Localized Raman enhancement from a double-hole nanostructure in a metal film,” J. Phys. Chem. Lett. C 112(39), 15098–15101 (2008).
[CrossRef]

Gordon, R.

Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, “Localized Raman enhancement from a double-hole nanostructure in a metal film,” J. Phys. Chem. Lett. C 112(39), 15098–15101 (2008).
[CrossRef]

Gorodetski, Y.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[CrossRef] [PubMed]

Hasman, E.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[CrossRef] [PubMed]

Höfler, G.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91(17), 173113 (2007).
[CrossRef]

Ikari, T.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, “Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture,” Jpn. J. Appl. Phys. 44(29), L929–L931 (2005).
[CrossRef]

Ishihara, K.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, “Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture,” Jpn. J. Appl. Phys. 44(29), L929–L931 (2005).
[CrossRef]

Ito, H.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, “Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture,” Jpn. J. Appl. Phys. 44(29), L929–L931 (2005).
[CrossRef]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003).
[CrossRef]

Kleiner, V.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[CrossRef] [PubMed]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

Le Ru, E. C.

E. C. Le Ru and P. G. Ethchegoin, “Rigorous justification of the |E|4enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63 (2006).
[CrossRef]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Majewski, M. L.

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[CrossRef]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Min, Q.

Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, “Localized Raman enhancement from a double-hole nanostructure in a metal film,” J. Phys. Chem. Lett. C 112(39), 15098–15101 (2008).
[CrossRef]

Minamide, H.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, “Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture,” Jpn. J. Appl. Phys. 44(29), L929–L931 (2005).
[CrossRef]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Mryasov, O.

K. Sendur, W. Challener, and O. Mryasov, “Interaction of spherical nanoparticles with a highly focused beam of light,” Opt. Express 16(5), 2874–2886 (2008).
[CrossRef] [PubMed]

Niv, A.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[CrossRef] [PubMed]

Ohashi, K.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, “Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture,” Jpn. J. Appl. Phys. 44(29), L929–L931 (2005).
[CrossRef]

Perea, E.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very low-profile “Bull’s Eye” feeder antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003).
[CrossRef]

Rakic, A. D.

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253358 (1959). [See also L. Novotny and B. Hecht, “Principles of nano-optics,” Cambridge, (2006)].
[CrossRef]

Rodríguez-Seco, J. E.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very low-profile “Bull’s Eye” feeder antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

Sahinöz, A.

K. Sendur and A. Sahinöz, “Interaction of radially polarized focused light with a prolate spheroidal nanoparticle,” Opt. Express 17(13), 10910–10925 (2009).
[CrossRef] [PubMed]

Santos, M. J. L.

Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, “Localized Raman enhancement from a double-hole nanostructure in a metal film,” J. Phys. Chem. Lett. C 112(39), 15098–15101 (2008).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Sendur, K.

K. Sendur, “An integral equation based numerical solution for nanoparticles illuminated with collimated and focused light,” Opt. Express 17(9), 7419–7430 (2009).
[CrossRef] [PubMed]

K. Sendur and A. Sahinöz, “Interaction of radially polarized focused light with a prolate spheroidal nanoparticle,” Opt. Express 17(13), 10910–10925 (2009).
[CrossRef] [PubMed]

K. Sendur, W. Challener, and O. Mryasov, “Interaction of spherical nanoparticles with a highly focused beam of light,” Opt. Express 16(5), 2874–2886 (2008).
[CrossRef] [PubMed]

Shikata, J.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, “Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture,” Jpn. J. Appl. Phys. 44(29), L929–L931 (2005).
[CrossRef]

Sorolla, M.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very low-profile “Bull’s Eye” feeder antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003).
[CrossRef]

Wang, D.

D. Wang, T. Yang, and K. B. Crozier, “Charge and current reservoirs for electric and magnetic field enhancement,” Opt. Express 18(10), 10388–10394 (2010).
[CrossRef] [PubMed]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253358 (1959). [See also L. Novotny and B. Hecht, “Principles of nano-optics,” Cambridge, (2006)].
[CrossRef]

Yang, T.

D. Wang, T. Yang, and K. B. Crozier, “Charge and current reservoirs for electric and magnetic field enhancement,” Opt. Express 18(10), 10388–10394 (2010).
[CrossRef] [PubMed]

Yokoyama, H.

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, “Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture,” Jpn. J. Appl. Phys. 44(29), L929–L931 (2005).
[CrossRef]

Yu, N.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91(17), 173113 (2007).
[CrossRef]

Appl. Opt. (1)

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[CrossRef]

Appl. Phys. Lett. (3)

K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J. Shikata, and H. Ito, “Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89(20), 201120 (2006).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91(17), 173113 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

E. C. Le Ru and P. G. Ethchegoin, “Rigorous justification of the |E|4enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63 (2006).
[CrossRef]

Chem. Soc. Rev. (1)

E. Bailo and V. Deckert, “Tip-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 921–930 (2008).
[CrossRef] [PubMed]

IEEE Antennas Wirel. Propag. Lett. (1)

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, F. Falcone, and M. Sorolla, ““Very low-profile “Bull’s Eye” feeder antenna,” IEEE Antennas Wirel. Propag. Lett. 4(1), 365–368 (2005).
[CrossRef]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003).
[CrossRef]

J. Phys. Chem. Lett. C (1)

Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, “Localized Raman enhancement from a double-hole nanostructure in a metal film,” J. Phys. Chem. Lett. C 112(39), 15098–15101 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Ishihara, T. Ikari, H. Minamide, J. Shikata, K. Ohashi, H. Yokoyama, and H. Ito, “Terahertz near-field imaging using enhanced transmission through a single subwavelength aperture,” Jpn. J. Appl. Phys. 44(29), L929–L931 (2005).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

D. Wang, T. Yang, and K. B. Crozier, “Charge and current reservoirs for electric and magnetic field enhancement,” Opt. Express 18(10), 10388–10394 (2010).
[CrossRef] [PubMed]

K. Sendur, W. Challener, and O. Mryasov, “Interaction of spherical nanoparticles with a highly focused beam of light,” Opt. Express 16(5), 2874–2886 (2008).
[CrossRef] [PubMed]

K. Sendur, “An integral equation based numerical solution for nanoparticles illuminated with collimated and focused light,” Opt. Express 17(9), 7419–7430 (2009).
[CrossRef] [PubMed]

K. Sendur and A. Sahinöz, “Interaction of radially polarized focused light with a prolate spheroidal nanoparticle,” Opt. Express 17(13), 10910–10925 (2009).
[CrossRef] [PubMed]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. Lett. (3)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef] [PubMed]

Proc. Roy. Soc. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. Roy. Soc. A 253358 (1959). [See also L. Novotny and B. Hecht, “Principles of nano-optics,” Cambridge, (2006)].
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Other (1)

D. A. Long, “Raman Spectroscopy,” McGraw-Hill, New York, 1977.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross section of a concentric ring grating concentrator. (b) Top view of the concentric ring grating concentrator. Black circles are raised Ag rings.

Fig. 2
Fig. 2

(a) Normalized x component of electric field at the center of the concentric ring grating concentrator. (b) Field distribution of central portion of concentric ring grating concentrator. Plot of the amplitude of x component of normalized electric field on top surface of the grating, for excitation at λ = 585 nm.

Fig. 3
Fig. 3

Fan-rod optical antenna.

Fig. 4
Fig. 4

(a) Ex 2 at the center of a fan-rod antenna normalized to the incident wave, for a single antenna and an antenna integrated with a concentric ring grating. Inset: schematic of simulated structure. (b) Plot of instantaneous value of x component of normalized electric field, for excitation at λ = 585 nm.

Fig. 5
Fig. 5

Far field radiation patterns of a point dipole at the center of a fan-rod antenna, and a point dipole at the center of a fan-rod antenna integrated with a concentric ring grating. The angles in the plots are the angles between the observation directions and the -z direction. The unit dBW/m2 is defined as 10 × log(power density). (a) yz plane. (b) xz plane.

Tables (2)

Tables Icon

Table 1 Collection Efficiencies for a Dipole Located at the Center of the Fan-Rod Antenna Integrated with and without the Concentric Ring Grating for Lenses with Different NAs

Tables Icon

Table 2 SERS Electromagnetic Enhancement Factors of Antenna-Grating and Antenna-Only Structures Calculated for Different NAs of Illumination/Collection Optics

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k ρ = k 0 ε d ε m ( ω ) ε d + ε m ( ω ) .
E F     =     ( E 2 | w i t h a n t e n n a E 2 | f r e e s p a c e ) ( P r a d | w i t h a n t e n n a P r a d | f r e e s p a c e ) ( η c o l l e c t i o n | w i t h a n t e n n a η c o l l e c t i o n | f r e e s p a c e ) .
E x | f r e e     s p a c e = i k f e i k f 2 π 0 θ max 0 2 π E ( θ , φ ) sin θ     d φ d θ , E ( θ , φ ) = E 0 1 2 [ ( 1 + cos θ ) ( 1 cos θ ) cos 2 φ ] ( cos θ ) 1 / 2 .
d 0 E l o c = d f a r E f a r . ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
d 0 x ^ E | w i t h     a n t e n n a ( θ , φ ) = d f a r e ^ p ( θ , φ ) E | f a r w i t h a n t e n n a ( θ , φ ) , ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
d 0 x ^ E | w i t h a n t e n n a r e m o v e d ( θ , φ ) = d f a r e ^ p ( θ , φ ) E | f a r f r e e s p a c e ( θ , φ ) ,
W ( θ , φ ) = E x | w i t h     a n t e n n a ( θ , φ ) E x | w i t h a n t e n n a r e m o v e d ( θ , φ ) = e ^ p ( θ , φ ) E | f a r w i t h a n t e n n a ( θ , φ ) e ^ p ( θ , φ ) E | f a r f r e e s p a c e ( θ , φ ) . ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
E x | w i t h     a n t e n n a = i k f e i k f 2 π 0 θ max 0 2 π W ( θ , φ ) E ( θ , φ ) sin θ     d φ d θ .

Metrics