Abstract

In this paper, we demonstrate for the first time an ultrafast fully functional photonic spiking neuron. Our experimental setup constitutes a complete all-optical implementation of a leaky integrate-and-fire neuron, a computational primitive that provides a basis for general purpose analog optical computation. Unlike purely analog computational models, spiking operation eliminates noise accumulation and results in robust and efficient processing. Operating at gigahertz speed, which corresponds to at least 108 speed-up compared with biological neurons, the demonstrated neuron provides all functionality required by the spiking neuron model. The two demonstrated prototypes and a demonstrated feedback operation mode prove the feasibility and stability of our approach and show the obtained performance characteristics.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Wang, and B. K. Jenkins, “Subtracting incoherent optical neuron model: analysis, experiment, and applications,” Appl. Opt. 29, 2171–2186 (1990).
    [PubMed]
  2. A. V. Grigor’yants, and I. N. Dyuzhikov, “Formation of a neuron-like pulsed response in a semiconductor resonator cavity with competing optical nonlinearities,” Kvant. Elektron. 21, 511–512 (1994) (Sov. J. Quantum Electron. 24, 469–470 (1994)).
  3. S. Tariq, M. K. Habib, and H. A. Helmy, “Opto-electronic neuron-type operation via stimulated Raman scattering in optical fiber,” J. Lightwave Technol. 15, 938–947 (1997).
  4. E. C. Mos, J. J. L. Hoppenbrouwers, M. T. Hill, M. W. Blum, J. J. H. B. Schleipen, and H. de Waardt, “Optical neuron by use of a laser diode with injection seeding and external optical feedback,” IEEE Trans. Neural Netw. 11, 988–996 (2000).
  5. G. Moagar-Poladian, “Reconfigurable optical neuron based on photoelectret materials,” Appl. Opt. 39, 782–787 (2000).
  6. M. T. Hill, E. E. E. Frietman, H. de Waardt, G.-d. Khoe, and H. J. S. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Netw. 13, 1504–1513 (2002).
  7. G. Moagar-Poladian, and M. Bulinski, “Optical reconfigurable neuron by using the transverse Pockels effect,” J. Optoelectron. Adv. Mater. 4, 929–936 (2002).
  8. R. J. Vogelstein, U. Mallik, J. T. Vogelstein, and G. Cauwenberghs, “Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses,” IEEE Trans. Neural Netw. 18, 253–265 (2007).
    [PubMed]
  9. G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity,” IEEE Trans. Neural Netw. 17, 211–221 (2006).
    [PubMed]
  10. R. Pashaie, and N. H. Farhat, “Optical realization of bioinspired spiking neurons in the electron trapping material thin film,” Appl. Opt. 46, 8411–8418 (2007).
    [PubMed]
  11. A. R. S. Romariz, and K. H. Wagner, “Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 1. Principles and experimental demonstration,” Appl. Opt. 46, 4736–4745 (2007).
    [PubMed]
  12. A. R. S. Romariz, and K. H. Wagner, “Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 2. High-frequency effects and optical coupling,” Appl. Opt. 46, 4746–4753 (2007).
    [PubMed]
  13. S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A 374, 739–743 (2010).
  14. D. Rosenbluth, K. Kravtsov, M. P. Fok, and P. R. Prucnal, “A high performance photonic pulse processing device,” Opt. Express 17, 22767–22772 (2009).
  15. C. Koch, Biophysics of Computation (Oxford University Press, 1999).
  16. W. Maass, and C. M. Bishop, eds., Pulsed Neural Networks (The MIT Press, 1999).
  17. R. Sarpeshkar, “Analog versus digital: Extrapolating from electronics to neurobiology,” Neural Comput. 10, 1601–1638 (1998).
    [PubMed]
  18. K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15, 13114–13122 (2007).
    [PubMed]
  19. M. Premaratne, D. Neˇsi’c, and G. P. Agrawal, “Pulse amplification and gain recovery in semiconductor optical amplifiers: A systematic analytical approach,” J. Lightwave Technol. 26, 1653–1660 (2008).
  20. E. M. Dianov, and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23, 3500–3508 (2005).
  21. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
  22. T. Aida, and P. Davis, “Storage of optical pulse data sequences in loop memory using multistable oscillations,” Electron. Lett. 27, 1544–1546 (1991).
  23. M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota, Y. Kimura, and M. Takaya, “Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains,” Electron. Lett. 29, 729–730 (1993).
  24. C. R. Doerr, W. S. Wong, H. A. Haus, and E. P. Ippen, “Additive-pulse mode-locking/limiting storage ring,” Opt. Lett. 19, 1747–1749 (1994).
    [PubMed]
  25. J. D. Moores, K. L. Hall, S. M. LePage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, and E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).

2010

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A 374, 739–743 (2010).

2009

D. Rosenbluth, K. Kravtsov, M. P. Fok, and P. R. Prucnal, “A high performance photonic pulse processing device,” Opt. Express 17, 22767–22772 (2009).

2008

M. Premaratne, D. Neˇsi’c, and G. P. Agrawal, “Pulse amplification and gain recovery in semiconductor optical amplifiers: A systematic analytical approach,” J. Lightwave Technol. 26, 1653–1660 (2008).

2007

R. Pashaie, and N. H. Farhat, “Optical realization of bioinspired spiking neurons in the electron trapping material thin film,” Appl. Opt. 46, 8411–8418 (2007).
[PubMed]

A. R. S. Romariz, and K. H. Wagner, “Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 1. Principles and experimental demonstration,” Appl. Opt. 46, 4736–4745 (2007).
[PubMed]

A. R. S. Romariz, and K. H. Wagner, “Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 2. High-frequency effects and optical coupling,” Appl. Opt. 46, 4746–4753 (2007).
[PubMed]

R. J. Vogelstein, U. Mallik, J. T. Vogelstein, and G. Cauwenberghs, “Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses,” IEEE Trans. Neural Netw. 18, 253–265 (2007).
[PubMed]

K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15, 13114–13122 (2007).
[PubMed]

2006

G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity,” IEEE Trans. Neural Netw. 17, 211–221 (2006).
[PubMed]

2005

E. M. Dianov, and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23, 3500–3508 (2005).

2002

M. T. Hill, E. E. E. Frietman, H. de Waardt, G.-d. Khoe, and H. J. S. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Netw. 13, 1504–1513 (2002).

G. Moagar-Poladian, and M. Bulinski, “Optical reconfigurable neuron by using the transverse Pockels effect,” J. Optoelectron. Adv. Mater. 4, 929–936 (2002).

2000

E. C. Mos, J. J. L. Hoppenbrouwers, M. T. Hill, M. W. Blum, J. J. H. B. Schleipen, and H. de Waardt, “Optical neuron by use of a laser diode with injection seeding and external optical feedback,” IEEE Trans. Neural Netw. 11, 988–996 (2000).

G. Moagar-Poladian, “Reconfigurable optical neuron based on photoelectret materials,” Appl. Opt. 39, 782–787 (2000).

1998

R. Sarpeshkar, “Analog versus digital: Extrapolating from electronics to neurobiology,” Neural Comput. 10, 1601–1638 (1998).
[PubMed]

1997

S. Tariq, M. K. Habib, and H. A. Helmy, “Opto-electronic neuron-type operation via stimulated Raman scattering in optical fiber,” J. Lightwave Technol. 15, 938–947 (1997).

1995

J. D. Moores, K. L. Hall, S. M. LePage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, and E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).

1994

C. R. Doerr, W. S. Wong, H. A. Haus, and E. P. Ippen, “Additive-pulse mode-locking/limiting storage ring,” Opt. Lett. 19, 1747–1749 (1994).
[PubMed]

A. V. Grigor’yants, and I. N. Dyuzhikov, “Formation of a neuron-like pulsed response in a semiconductor resonator cavity with competing optical nonlinearities,” Kvant. Elektron. 21, 511–512 (1994) (Sov. J. Quantum Electron. 24, 469–470 (1994)).

1993

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).

M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota, Y. Kimura, and M. Takaya, “Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains,” Electron. Lett. 29, 729–730 (1993).

1991

T. Aida, and P. Davis, “Storage of optical pulse data sequences in loop memory using multistable oscillations,” Electron. Lett. 27, 1544–1546 (1991).

1990

C.-H. Wang, and B. K. Jenkins, “Subtracting incoherent optical neuron model: analysis, experiment, and applications,” Appl. Opt. 29, 2171–2186 (1990).
[PubMed]

Agrawal, G. P.

M. Premaratne, D. Neˇsi’c, and G. P. Agrawal, “Pulse amplification and gain recovery in semiconductor optical amplifiers: A systematic analytical approach,” J. Lightwave Technol. 26, 1653–1660 (2008).

Aida, T.

T. Aida, and P. Davis, “Storage of optical pulse data sequences in loop memory using multistable oscillations,” Electron. Lett. 27, 1544–1546 (1991).

Beri, S.

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A 374, 739–743 (2010).

Blum, M. W.

E. C. Mos, J. J. L. Hoppenbrouwers, M. T. Hill, M. W. Blum, J. J. H. B. Schleipen, and H. de Waardt, “Optical neuron by use of a laser diode with injection seeding and external optical feedback,” IEEE Trans. Neural Netw. 11, 988–996 (2000).

Bubnov, M. M.

K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15, 13114–13122 (2007).
[PubMed]

Bulinski, M.

G. Moagar-Poladian, and M. Bulinski, “Optical reconfigurable neuron by using the transverse Pockels effect,” J. Optoelectron. Adv. Mater. 4, 929–936 (2002).

Cauwenberghs, G.

R. J. Vogelstein, U. Mallik, J. T. Vogelstein, and G. Cauwenberghs, “Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses,” IEEE Trans. Neural Netw. 18, 253–265 (2007).
[PubMed]

Chicca, E.

G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity,” IEEE Trans. Neural Netw. 17, 211–221 (2006).
[PubMed]

Danckaert, J.

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A 374, 739–743 (2010).

Davis, P.

T. Aida, and P. Davis, “Storage of optical pulse data sequences in loop memory using multistable oscillations,” Electron. Lett. 27, 1544–1546 (1991).

de Waardt, H.

M. T. Hill, E. E. E. Frietman, H. de Waardt, G.-d. Khoe, and H. J. S. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Netw. 13, 1504–1513 (2002).

E. C. Mos, J. J. L. Hoppenbrouwers, M. T. Hill, M. W. Blum, J. J. H. B. Schleipen, and H. de Waardt, “Optical neuron by use of a laser diode with injection seeding and external optical feedback,” IEEE Trans. Neural Netw. 11, 988–996 (2000).

Dianov, E. M.

E. M. Dianov, and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23, 3500–3508 (2005).

Doerr, C. R.

C. R. Doerr, W. S. Wong, H. A. Haus, and E. P. Ippen, “Additive-pulse mode-locking/limiting storage ring,” Opt. Lett. 19, 1747–1749 (1994).
[PubMed]

Dorren, H. J. S.

M. T. Hill, E. E. E. Frietman, H. de Waardt, G.-d. Khoe, and H. J. S. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Netw. 13, 1504–1513 (2002).

Douglas, R.

G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity,” IEEE Trans. Neural Netw. 17, 211–221 (2006).
[PubMed]

Dyuzhikov, I. N.

A. V. Grigor’yants, and I. N. Dyuzhikov, “Formation of a neuron-like pulsed response in a semiconductor resonator cavity with competing optical nonlinearities,” Kvant. Elektron. 21, 511–512 (1994) (Sov. J. Quantum Electron. 24, 469–470 (1994)).

Farhat, N. H.

R. Pashaie, and N. H. Farhat, “Optical realization of bioinspired spiking neurons in the electron trapping material thin film,” Appl. Opt. 46, 8411–8418 (2007).
[PubMed]

Fok, M. P.

D. Rosenbluth, K. Kravtsov, M. P. Fok, and P. R. Prucnal, “A high performance photonic pulse processing device,” Opt. Express 17, 22767–22772 (2009).

Frietman, E. E. E.

M. T. Hill, E. E. E. Frietman, H. de Waardt, G.-d. Khoe, and H. J. S. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Netw. 13, 1504–1513 (2002).

Gelens, L.

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A 374, 739–743 (2010).

Glesk, I.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).

Grigor’yants, A. V.

A. V. Grigor’yants, and I. N. Dyuzhikov, “Formation of a neuron-like pulsed response in a semiconductor resonator cavity with competing optical nonlinearities,” Kvant. Elektron. 21, 511–512 (1994) (Sov. J. Quantum Electron. 24, 469–470 (1994)).

Habib, M. K.

S. Tariq, M. K. Habib, and H. A. Helmy, “Opto-electronic neuron-type operation via stimulated Raman scattering in optical fiber,” J. Lightwave Technol. 15, 938–947 (1997).

Hall, K. L.

J. D. Moores, K. L. Hall, S. M. LePage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, and E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).

Haus, H. A.

J. D. Moores, K. L. Hall, S. M. LePage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, and E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).

C. R. Doerr, W. S. Wong, H. A. Haus, and E. P. Ippen, “Additive-pulse mode-locking/limiting storage ring,” Opt. Lett. 19, 1747–1749 (1994).
[PubMed]

Helmy, H. A.

S. Tariq, M. K. Habib, and H. A. Helmy, “Opto-electronic neuron-type operation via stimulated Raman scattering in optical fiber,” J. Lightwave Technol. 15, 938–947 (1997).

Hill, M. T.

M. T. Hill, E. E. E. Frietman, H. de Waardt, G.-d. Khoe, and H. J. S. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Netw. 13, 1504–1513 (2002).

E. C. Mos, J. J. L. Hoppenbrouwers, M. T. Hill, M. W. Blum, J. J. H. B. Schleipen, and H. de Waardt, “Optical neuron by use of a laser diode with injection seeding and external optical feedback,” IEEE Trans. Neural Netw. 11, 988–996 (2000).

Hoppenbrouwers, J. J. L.

E. C. Mos, J. J. L. Hoppenbrouwers, M. T. Hill, M. W. Blum, J. J. H. B. Schleipen, and H. de Waardt, “Optical neuron by use of a laser diode with injection seeding and external optical feedback,” IEEE Trans. Neural Netw. 11, 988–996 (2000).

Indiveri, G.

G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity,” IEEE Trans. Neural Netw. 17, 211–221 (2006).
[PubMed]

Ippen, E. P.

J. D. Moores, K. L. Hall, S. M. LePage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, and E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).

C. R. Doerr, W. S. Wong, H. A. Haus, and E. P. Ippen, “Additive-pulse mode-locking/limiting storage ring,” Opt. Lett. 19, 1747–1749 (1994).
[PubMed]

Jenkins, B. K.

C.-H. Wang, and B. K. Jenkins, “Subtracting incoherent optical neuron model: analysis, experiment, and applications,” Appl. Opt. 29, 2171–2186 (1990).
[PubMed]

Kane, M.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).

Khoe, G.-d.

M. T. Hill, E. E. E. Frietman, H. de Waardt, G.-d. Khoe, and H. J. S. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Netw. 13, 1504–1513 (2002).

Kimura, Y.

M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota, Y. Kimura, and M. Takaya, “Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains,” Electron. Lett. 29, 729–730 (1993).

Kravtsov, K.

D. Rosenbluth, K. Kravtsov, M. P. Fok, and P. R. Prucnal, “A high performance photonic pulse processing device,” Opt. Express 17, 22767–22772 (2009).

K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15, 13114–13122 (2007).
[PubMed]

Kubota, H.

M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota, Y. Kimura, and M. Takaya, “Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains,” Electron. Lett. 29, 729–730 (1993).

LePage, S. M.

J. D. Moores, K. L. Hall, S. M. LePage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, and E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).

Mallik, U.

R. J. Vogelstein, U. Mallik, J. T. Vogelstein, and G. Cauwenberghs, “Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses,” IEEE Trans. Neural Netw. 18, 253–265 (2007).
[PubMed]

Mashall, L.

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A 374, 739–743 (2010).

Mashinsky, V. M.

E. M. Dianov, and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23, 3500–3508 (2005).

Mezosi, G.

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A 374, 739–743 (2010).

Moagar-Poladian, G.

G. Moagar-Poladian, and M. Bulinski, “Optical reconfigurable neuron by using the transverse Pockels effect,” J. Optoelectron. Adv. Mater. 4, 929–936 (2002).

G. Moagar-Poladian, “Reconfigurable optical neuron based on photoelectret materials,” Appl. Opt. 39, 782–787 (2000).

Moores, J. D.

J. D. Moores, K. L. Hall, S. M. LePage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, and E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).

Mos, E. C.

E. C. Mos, J. J. L. Hoppenbrouwers, M. T. Hill, M. W. Blum, J. J. H. B. Schleipen, and H. de Waardt, “Optical neuron by use of a laser diode with injection seeding and external optical feedback,” IEEE Trans. Neural Netw. 11, 988–996 (2000).

Nakazawa, M.

M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota, Y. Kimura, and M. Takaya, “Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains,” Electron. Lett. 29, 729–730 (1993).

Ne?si’c, D.

M. Premaratne, D. Neˇsi’c, and G. P. Agrawal, “Pulse amplification and gain recovery in semiconductor optical amplifiers: A systematic analytical approach,” J. Lightwave Technol. 26, 1653–1660 (2008).

Pashaie, R.

R. Pashaie, and N. H. Farhat, “Optical realization of bioinspired spiking neurons in the electron trapping material thin film,” Appl. Opt. 46, 8411–8418 (2007).
[PubMed]

Premaratne, M.

M. Premaratne, D. Neˇsi’c, and G. P. Agrawal, “Pulse amplification and gain recovery in semiconductor optical amplifiers: A systematic analytical approach,” J. Lightwave Technol. 26, 1653–1660 (2008).

Prucnal, P. R.

D. Rosenbluth, K. Kravtsov, M. P. Fok, and P. R. Prucnal, “A high performance photonic pulse processing device,” Opt. Express 17, 22767–22772 (2009).

K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15, 13114–13122 (2007).
[PubMed]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).

Rauschenbach, K. A.

J. D. Moores, K. L. Hall, S. M. LePage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, and E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).

Romariz, A. R. S.

A. R. S. Romariz, and K. H. Wagner, “Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 1. Principles and experimental demonstration,” Appl. Opt. 46, 4736–4745 (2007).
[PubMed]

A. R. S. Romariz, and K. H. Wagner, “Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 2. High-frequency effects and optical coupling,” Appl. Opt. 46, 4746–4753 (2007).
[PubMed]

Rosenbluth, D.

D. Rosenbluth, K. Kravtsov, M. P. Fok, and P. R. Prucnal, “A high performance photonic pulse processing device,” Opt. Express 17, 22767–22772 (2009).

Sarpeshkar, R.

R. Sarpeshkar, “Analog versus digital: Extrapolating from electronics to neurobiology,” Neural Comput. 10, 1601–1638 (1998).
[PubMed]

Schleipen, J. J. H. B.

E. C. Mos, J. J. L. Hoppenbrouwers, M. T. Hill, M. W. Blum, J. J. H. B. Schleipen, and H. de Waardt, “Optical neuron by use of a laser diode with injection seeding and external optical feedback,” IEEE Trans. Neural Netw. 11, 988–996 (2000).

Sokoloff, J. P.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).

Sorel, M.

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A 374, 739–743 (2010).

Suzuki, K.

M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota, Y. Kimura, and M. Takaya, “Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains,” Electron. Lett. 29, 729–730 (1993).

Takaya, M.

M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota, Y. Kimura, and M. Takaya, “Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains,” Electron. Lett. 29, 729–730 (1993).

Tariq, S.

S. Tariq, M. K. Habib, and H. A. Helmy, “Opto-electronic neuron-type operation via stimulated Raman scattering in optical fiber,” J. Lightwave Technol. 15, 938–947 (1997).

Van der Sande, G.

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A 374, 739–743 (2010).

Verschaffelt, G.

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A 374, 739–743 (2010).

Vogelstein, J. T.

R. J. Vogelstein, U. Mallik, J. T. Vogelstein, and G. Cauwenberghs, “Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses,” IEEE Trans. Neural Netw. 18, 253–265 (2007).
[PubMed]

Vogelstein, R. J.

R. J. Vogelstein, U. Mallik, J. T. Vogelstein, and G. Cauwenberghs, “Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses,” IEEE Trans. Neural Netw. 18, 253–265 (2007).
[PubMed]

Wagner, K. H.

A. R. S. Romariz, and K. H. Wagner, “Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 2. High-frequency effects and optical coupling,” Appl. Opt. 46, 4746–4753 (2007).
[PubMed]

A. R. S. Romariz, and K. H. Wagner, “Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 1. Principles and experimental demonstration,” Appl. Opt. 46, 4736–4745 (2007).
[PubMed]

Wang, C.-H.

C.-H. Wang, and B. K. Jenkins, “Subtracting incoherent optical neuron model: analysis, experiment, and applications,” Appl. Opt. 29, 2171–2186 (1990).
[PubMed]

Wong, W. S.

J. D. Moores, K. L. Hall, S. M. LePage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, and E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).

C. R. Doerr, W. S. Wong, H. A. Haus, and E. P. Ippen, “Additive-pulse mode-locking/limiting storage ring,” Opt. Lett. 19, 1747–1749 (1994).
[PubMed]

Yamada, E.

M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota, Y. Kimura, and M. Takaya, “Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains,” Electron. Lett. 29, 729–730 (1993).

Appl. Opt.

C.-H. Wang, and B. K. Jenkins, “Subtracting incoherent optical neuron model: analysis, experiment, and applications,” Appl. Opt. 29, 2171–2186 (1990).
[PubMed]

G. Moagar-Poladian, “Reconfigurable optical neuron based on photoelectret materials,” Appl. Opt. 39, 782–787 (2000).

R. Pashaie, and N. H. Farhat, “Optical realization of bioinspired spiking neurons in the electron trapping material thin film,” Appl. Opt. 46, 8411–8418 (2007).
[PubMed]

A. R. S. Romariz, and K. H. Wagner, “Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 1. Principles and experimental demonstration,” Appl. Opt. 46, 4736–4745 (2007).
[PubMed]

A. R. S. Romariz, and K. H. Wagner, “Tunable vertical-cavity surface-emitting laser with feedback to implement a pulsed neural model. 2. High-frequency effects and optical coupling,” Appl. Opt. 46, 4746–4753 (2007).
[PubMed]

Electron. Lett.

T. Aida, and P. Davis, “Storage of optical pulse data sequences in loop memory using multistable oscillations,” Electron. Lett. 27, 1544–1546 (1991).

M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota, Y. Kimura, and M. Takaya, “Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains,” Electron. Lett. 29, 729–730 (1993).

IEEE Photon. Technol. Lett.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).

J. D. Moores, K. L. Hall, S. M. LePage, K. A. Rauschenbach, W. S. Wong, H. A. Haus, and E. P. Ippen, “20-GHz optical storage loop/laser using amplitude modulation, filtering, and artificial fast saturable absorption,” IEEE Photon. Technol. Lett. 7, 1096–1098 (1995).

IEEE Trans. Neural Netw.

M. T. Hill, E. E. E. Frietman, H. de Waardt, G.-d. Khoe, and H. J. S. Dorren, “All fiber-optic neural network using coupled SOA based ring lasers,” IEEE Trans. Neural Netw. 13, 1504–1513 (2002).

R. J. Vogelstein, U. Mallik, J. T. Vogelstein, and G. Cauwenberghs, “Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses,” IEEE Trans. Neural Netw. 18, 253–265 (2007).
[PubMed]

G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity,” IEEE Trans. Neural Netw. 17, 211–221 (2006).
[PubMed]

E. C. Mos, J. J. L. Hoppenbrouwers, M. T. Hill, M. W. Blum, J. J. H. B. Schleipen, and H. de Waardt, “Optical neuron by use of a laser diode with injection seeding and external optical feedback,” IEEE Trans. Neural Netw. 11, 988–996 (2000).

J. Lightwave Technol.

S. Tariq, M. K. Habib, and H. A. Helmy, “Opto-electronic neuron-type operation via stimulated Raman scattering in optical fiber,” J. Lightwave Technol. 15, 938–947 (1997).

M. Premaratne, D. Neˇsi’c, and G. P. Agrawal, “Pulse amplification and gain recovery in semiconductor optical amplifiers: A systematic analytical approach,” J. Lightwave Technol. 26, 1653–1660 (2008).

E. M. Dianov, and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23, 3500–3508 (2005).

J. Optoelectron. Adv. Mater.

G. Moagar-Poladian, and M. Bulinski, “Optical reconfigurable neuron by using the transverse Pockels effect,” J. Optoelectron. Adv. Mater. 4, 929–936 (2002).

Kvant. Elektron.

A. V. Grigor’yants, and I. N. Dyuzhikov, “Formation of a neuron-like pulsed response in a semiconductor resonator cavity with competing optical nonlinearities,” Kvant. Elektron. 21, 511–512 (1994) (Sov. J. Quantum Electron. 24, 469–470 (1994)).

Neural Comput.

R. Sarpeshkar, “Analog versus digital: Extrapolating from electronics to neurobiology,” Neural Comput. 10, 1601–1638 (1998).
[PubMed]

Opt. Express

K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15, 13114–13122 (2007).
[PubMed]

D. Rosenbluth, K. Kravtsov, M. P. Fok, and P. R. Prucnal, “A high performance photonic pulse processing device,” Opt. Express 17, 22767–22772 (2009).

Opt. Lett.

C. R. Doerr, W. S. Wong, H. A. Haus, and E. P. Ippen, “Additive-pulse mode-locking/limiting storage ring,” Opt. Lett. 19, 1747–1749 (1994).
[PubMed]

Phys. Lett. A

S. Beri, L. Mashall, L. Gelens, G. Van der Sande, G. Mezosi, M. Sorel, J. Danckaert, and G. Verschaffelt, “Excitability in optical systems close to Z2-symmetry,” Phys. Lett. A 374, 739–743 (2010).

Other

C. Koch, Biophysics of Computation (Oxford University Press, 1999).

W. Maass, and C. M. Bishop, eds., Pulsed Neural Networks (The MIT Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic drawing of a biological neuron.

Fig. 2
Fig. 2

Block diagram of the photonic neuron. G — variable attenuator, T — variable delay line, SOA — semiconductor optical amplifier, HD fiber — heavily GeO2-doped fiber, TOAD — terahertz optical asymmetric demultiplexer.

Fig. 3
Fig. 3

Experimental setup. G — variable attenuator, T — variable delay line, PC — polarization controller, TI — tunable isolator [18], EDFA — erbium-doped fiber amplifier, C — circulator, HD NL fiber — heavily GeO2-doped nonlinear fiber.

Fig. 4
Fig. 4

Signal propagating through the neuron. (A) — input signal, (B) — signal after the integrator, (C) — result of the first thresholding, (D) — inverted sequence, (E) — neuron output.

Fig. 5
Fig. 5

Neuron excitation with multiple pulses per integration time. All the graphs show a part of a particular bit period in a sequence with 622 MHz repetition rate. Rows a and b show the model of the input signal and its measured time dependence respectively. c corresponds to the output of the neuron’s integration stage, sampled with three pulses per bit period shown in f. The last row (d) shows a measured thresholder output, equivalent to detection of the smallest pulses in the sequence i.e. detection of the aligned pulse triplets. Part e is a measured eye diagram of the input signal.

Fig. 6
Fig. 6

Schematic of the symmetric photonic neuron with excitatory and inhibitory inputs. The setup consists of two identical SOA integration stages with corresponding passive input circuits, and the thresholder. G — variable gain/attenuation; T — variable time delay. The inset shows an example of signal propagation through the neuron. Each waveform is measured at the certain point in the setup: a and b are excitatory and inhibitory inputs respectively, c is the output of the second integration stage, and d is the neuron output, i.e. the thresholded version of c.

Fig. 7
Fig. 7

Measured waveforms at the outputs of the two SOA stages of the neuron shown together with the input data. Column a — only excitatory pulses are sent to the neuron; b — inhibitory pulses only; c — both excitatory and inhibitory pulse streams are provided.

Fig. 8
Fig. 8

Principle of storing data in a neuron-based loop with positive feedback. Three stages of the process are shown.

Fig. 9
Fig. 9

Block diagram of the feedback-mode operation of the neuron. Mod — Mach-Zehnder intensity modulator.

Fig. 10
Fig. 10

Examples of the stored bit patterns in the neural feedback loop. The total round-trip time is equal to 485 bit intervals, so patterns of a length of 5, 97, and 485 bits can be stored in this configuration. The diagram shows one example of a 97 bit-long pattern, two examples of different 5-bit patterns, and, in the last column, a 485-bit pattern. The last one, due to its large length, has also a zoomed-in version of its part.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d V m ( t ) d t = V rest τ m V m ( t ) τ m 1 C m V m ( t ) σ ( t )
d N ( t ) d t = N rest τ e N ( t ) τ e Γ a E p N ( t ) I ( t )

Metrics