Abstract

a mode-locked radially polarized laser based on a ceramic Nd:YAG rod that was transversely pumped by LD bars. The maximum output power of 10.6 W was achieved with the frequency of 45 MHz, the average pulse width of 75 ps Abstract: By using a semiconductor saturable absorber mirror, we demonstrated the generation of and the beam quality of M2= 2.11.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
    [CrossRef]
  2. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
    [CrossRef]
  3. Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [PubMed]
  4. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [CrossRef] [PubMed]
  5. S. C. Tidwell, G. H. Kim, and W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32(27), 5222–5229 (1993).
    [CrossRef] [PubMed]
  6. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [CrossRef] [PubMed]
  7. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
    [CrossRef] [PubMed]
  8. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31(14), 2151–2153 (2006).
    [CrossRef] [PubMed]
  9. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28(10), 807–809 (2003).
    [CrossRef] [PubMed]
  10. I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32(1), 47–49 (2007).
    [CrossRef]
  11. F. Enderli and T. Feurer, “Radially polarized mode-locked Nd:YAG laser,” Opt. Lett. 34(13), 2030–2032 (2009).
    [CrossRef] [PubMed]
  12. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992).
    [CrossRef] [PubMed]
  13. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [CrossRef]
  14. G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers. with multiple laser heads,” Appl. Phys. B 71, 19 (2000).
  15. G. J. Spühler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24(8), 528–530 (1999).
    [CrossRef]
  16. G. A. Kumar, A. A. Jianren Lu, K.-I. Kaminskii, H. Ueda, T. Yagi, Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004).
    [CrossRef]

2009 (1)

F. Enderli and T. Feurer, “Radially polarized mode-locked Nd:YAG laser,” Opt. Lett. 34(13), 2030–2032 (2009).
[CrossRef] [PubMed]

2007 (1)

I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32(1), 47–49 (2007).
[CrossRef]

2006 (1)

K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31(14), 2151–2153 (2006).
[CrossRef] [PubMed]

2005 (1)

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
[CrossRef] [PubMed]

2004 (2)

G. A. Kumar, A. A. Jianren Lu, K.-I. Kaminskii, H. Ueda, T. Yagi, Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004).
[CrossRef]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[CrossRef] [PubMed]

2003 (1)

I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28(10), 807–809 (2003).
[CrossRef] [PubMed]

2002 (1)

Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[PubMed]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

2000 (2)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
[CrossRef]

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers. with multiple laser heads,” Appl. Phys. B 71, 19 (2000).

1999 (2)

G. J. Spühler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24(8), 528–530 (1999).
[CrossRef]

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

1993 (1)

S. C. Tidwell, G. H. Kim, and W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32(27), 5222–5229 (1993).
[CrossRef] [PubMed]

1992 (1)

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992).
[CrossRef] [PubMed]

Alexander, J.

G. J. Spühler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24(8), 528–530 (1999).
[CrossRef]

Asom, M. T.

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992).
[CrossRef] [PubMed]

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Boyd, G. D.

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992).
[CrossRef] [PubMed]

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Chiu, T. H.

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992).
[CrossRef] [PubMed]

Dymott, M. J. P.

G. J. Spühler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24(8), 528–530 (1999).
[CrossRef]

Enderli, F.

F. Enderli and T. Feurer, “Radially polarized mode-locked Nd:YAG laser,” Opt. Lett. 34(13), 2030–2032 (2009).
[CrossRef] [PubMed]

Ferguson, J. F.

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992).
[CrossRef] [PubMed]

Feurer, T.

F. Enderli and T. Feurer, “Radially polarized mode-locked Nd:YAG laser,” Opt. Lett. 34(13), 2030–2032 (2009).
[CrossRef] [PubMed]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Jackel, S.

I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32(1), 47–49 (2007).
[CrossRef]

I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28(10), 807–809 (2003).
[CrossRef] [PubMed]

Jianren Lu, A. A.

G. A. Kumar, A. A. Jianren Lu, K.-I. Kaminskii, H. Ueda, T. Yagi, Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004).
[CrossRef]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Kaminskii, K.-I.

G. A. Kumar, A. A. Jianren Lu, K.-I. Kaminskii, H. Ueda, T. Yagi, Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004).
[CrossRef]

Kartner, F. X.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Keller, U.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers. with multiple laser heads,” Appl. Phys. B 71, 19 (2000).

G. J. Spühler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24(8), 528–530 (1999).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992).
[CrossRef] [PubMed]

Kim, G. H.

S. C. Tidwell, G. H. Kim, and W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32(27), 5222–5229 (1993).
[CrossRef] [PubMed]

Kimura, W. D.

S. C. Tidwell, G. H. Kim, and W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32(27), 5222–5229 (1993).
[CrossRef] [PubMed]

Kmetec, J. D.

G. J. Spühler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24(8), 528–530 (1999).
[CrossRef]

Kopf, D.

G. J. Spühler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24(8), 528–530 (1999).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Kozawa, Y.

K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31(14), 2151–2153 (2006).
[CrossRef] [PubMed]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
[CrossRef] [PubMed]

Kumar, G. A.

G. A. Kumar, A. A. Jianren Lu, K.-I. Kaminskii, H. Ueda, T. Yagi, Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004).
[CrossRef]

Leger, J.

Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[PubMed]

Leibush, E.

I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32(1), 47–49 (2007).
[CrossRef]

Lumer, Y.

I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32(1), 47–49 (2007).
[CrossRef]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Meir, A.

I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32(1), 47–49 (2007).
[CrossRef]

I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28(10), 807–809 (2003).
[CrossRef] [PubMed]

Meyer, J.

G. J. Spühler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24(8), 528–530 (1999).
[CrossRef]

Miller, D. A. B.

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992).
[CrossRef] [PubMed]

Moser, M.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers. with multiple laser heads,” Appl. Phys. B 71, 19 (2000).

G. J. Spühler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24(8), 528–530 (1999).
[CrossRef]

Moshe, I.

I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32(1), 47–49 (2007).
[CrossRef]

I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28(10), 807–809 (2003).
[CrossRef] [PubMed]

Nesterov, A. V.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
[CrossRef]

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

Niziev, V. G.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
[CrossRef]

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Paschotta, R.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers. with multiple laser heads,” Appl. Phys. B 71, 19 (2000).

G. J. Spühler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24(8), 528–530 (1999).
[CrossRef]

Sato, S.

K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31(14), 2151–2153 (2006).
[CrossRef] [PubMed]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
[CrossRef] [PubMed]

Spühler, G. J.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers. with multiple laser heads,” Appl. Phys. B 71, 19 (2000).

G. J. Spühler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24(8), 528–530 (1999).
[CrossRef]

Südmeyer, T.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers. with multiple laser heads,” Appl. Phys. B 71, 19 (2000).

Tidwell, S. C.

S. C. Tidwell, G. H. Kim, and W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32(27), 5222–5229 (1993).
[CrossRef] [PubMed]

Truong, G.

G. J. Spühler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24(8), 528–530 (1999).
[CrossRef]

Ueda, H.

G. A. Kumar, A. A. Jianren Lu, K.-I. Kaminskii, H. Ueda, T. Yagi, Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004).
[CrossRef]

Unnikrishnan, N. V.

G. A. Kumar, A. A. Jianren Lu, K.-I. Kaminskii, H. Ueda, T. Yagi, Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004).
[CrossRef]

Weingarten, K. J.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers. with multiple laser heads,” Appl. Phys. B 71, 19 (2000).

G. J. Spühler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24(8), 528–530 (1999).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

Yagi, T.

G. A. Kumar, A. A. Jianren Lu, K.-I. Kaminskii, H. Ueda, T. Yagi, Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004).
[CrossRef]

Yanagitani,

G. A. Kumar, A. A. Jianren Lu, K.-I. Kaminskii, H. Ueda, T. Yagi, Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004).
[CrossRef]

Yonezawa, K.

K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31(14), 2151–2153 (2006).
[CrossRef] [PubMed]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Zhan, Q.

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[CrossRef] [PubMed]

Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[PubMed]

Appl. Opt. (1)

S. C. Tidwell, G. H. Kim, and W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32(27), 5222–5229 (1993).
[CrossRef] [PubMed]

Appl. Phys. B (1)

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers. with multiple laser heads,” Appl. Phys. B 71, 19 (2000).

IEEE J. Quantum Electron. (1)

G. A. Kumar, A. A. Jianren Lu, K.-I. Kaminskii, H. Ueda, T. Yagi, Yanagitani, and N. V. Unnikrishnan, “Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics,” IEEE J. Quantum Electron. 40(6), 747–758 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[CrossRef]

J. Phys. D (2)

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000).
[CrossRef]

Opt. Express (2)

Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[PubMed]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[CrossRef] [PubMed]

Opt. Lett. (7)

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
[CrossRef] [PubMed]

K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31(14), 2151–2153 (2006).
[CrossRef] [PubMed]

I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28(10), 807–809 (2003).
[CrossRef] [PubMed]

I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, “2 kW, M2 < 10 radially polarized beams from aberration-compensated rod-based Nd:YAG lasers,” Opt. Lett. 32(1), 47–49 (2007).
[CrossRef]

F. Enderli and T. Feurer, “Radially polarized mode-locked Nd:YAG laser,” Opt. Lett. 34(13), 2030–2032 (2009).
[CrossRef] [PubMed]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17(7), 505–507 (1992).
[CrossRef] [PubMed]

G. J. Spühler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, “Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam,” Opt. Lett. 24(8), 528–530 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the laser cavity. L1-L5 are the distances between optics elements.

Fig. 2
Fig. 2

Output power versus the pump power.

Fig. 3
Fig. 3

Intensity distributions of the radially polarized laser beam. (a) Total intensity distribution. (b)-(d) Intensity after the beam passes through a linear polarizer. The arrows indicate the directions of the polarizer.

Fig. 4
Fig. 4

Mode radii on the laser rod (red), the output mirror (green) and the SESAM (blue) versus the dioptric power.

Fig. 5
Fig. 5

Beam radius of the radially polarized mode as a function of position in the cavity. The left end of the red line is on the output mirror and the right end is on the SESAM.

Fig. 6
Fig. 6

Laser pulses acquired by a high-speed oscillograph, which indicates that the laser works in the CW mode-locking state.

Fig. 7
Fig. 7

Intensity autocorrelation of the output pulses with a Gaussian fit. The pulse duration is measured as 75 ps.

Metrics