Abstract

Variable-angle and Mueller matrix spectroscopic ellipsometry are used to determine the effective dielectric tensors of random and aligned silver nanoparticles and nanorods thin films. Randomly arranged particles are uniaxially anisotropic while aligned particles are biaxially anisotropic, with the anisotropy predominantly at the plasmonic resonances. The strong resonances in nanorod arrays result in the real part of the effective in-plane permittivities being opposite in sign over a significant range in the visible, suggesting the potential to design materials that display tunable negative-refraction. A structural tilt in the particle arrays results in monoclinic dielectric properties.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930–930 (2008).
    [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  3. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005).
    [CrossRef] [PubMed]
  4. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 4 (2002).
    [CrossRef]
  5. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000).
    [CrossRef]
  6. Y. M. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
    [CrossRef] [PubMed]
  7. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11(7), 735–745 (2003).
    [CrossRef] [PubMed]
  8. I. Romero and F. J. García de Abajo, “Anisotropy and particle-size effects in nanostructured plasmonic metamaterials,” Opt. Express 17(24), 22012–22022 (2009).
    [CrossRef] [PubMed]
  9. A. Keller, R. Cuerno, S. Facsko, and W. Moller, “Anisotropic scaling of ripple morphologies on high-fluence sputtered silicon,” Phys. Rev. B 79(11), 7 (2009).
    [CrossRef]
  10. T. W. H. Oates, A. Keller, S. Facsko, and A. Mucklich, “Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption,” Plasmonics 2(2), 47–50 (2007).
    [CrossRef]
  11. T. W. H. Oates, A. Keller, S. Noda, and S. Facsko, “Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates,” Appl. Phys. Lett. 93(6), 3 (2008).
    [CrossRef]
  12. M. Ranjan, T. W. H. Oates, S. Facsko, and W. Möller, “Optical properties of silver nanowire arrays with 35 nm periodicity,” Opt. Lett. 35(15), 2576–2578 (2010).
    [CrossRef] [PubMed]
  13. R. W. Collins and J. Koh, “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. A 16(8), 1997–2006 (1999).
    [CrossRef]
  14. R. M. A. Azzam and N. M. Bashara, “Generalized Ellipsometry for Surfaces with Directional Preference - Application to Diffraction Gratings,” J. Opt. Soc. Am. 62(12), 1375–1375 (1972).
    [CrossRef]
  15. R. M. A. Azzam, and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1987).
  16. H. Wormeester, E. S. Kooij, and B. Poelsema, “Effective dielectric response of nanostructured layers,” Phys. Status Solidi A-Appl, Mat. 205, 756–763 (2008).
    [CrossRef]
  17. G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
    [CrossRef]
  18. D. W. Lynch, and W. R. Hunter, in Handbook of Optical Constants of Solids, ed. Palik, E. D. (Academic Press, 1985).
  19. S. Yamaguchi, “Optical Absorption of Heat Treated Very Thin Silver Films and Its Dependence on Angle of Incidence,” J. Phys. Soc. Jpn. 17(7), 1172–1180 (1962).
    [CrossRef]
  20. T. Yamaguchi, S. Yoshida, and A. Kinbara, “Effect of Dipole Interaction between Island Particles on Optical Properties of an Aggregated Silver Film,” Thin Solid Films 13(2), 261–264 (1972).
    [CrossRef]
  21. T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical Effect of Substrate on Anomalous Absorption of Aggregated Silver Films,” Thin Solid Films 21(1), 173–187 (1974).
    [CrossRef]
  22. D. Bedeaux, and J. Vlieger, Optical properties of Surfaces (Imperial College Press, 2001).
  23. L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313–314(1-2), 356–361 (1998).
    [CrossRef]
  24. T. W. H. Oates, H. Sugime, and S. Noda, “Combinatorial Surface-Enhanced Raman Spectroscopy and Spectroscopic Ellipsometry of Silver Island Films,” J. Phys. Chem. C 113(12), 4820–4828 (2009).
    [CrossRef]
  25. R. Lazzari, S. Roux, I. Simonsen, J. Jupille, D. Bedeaux, and J. Vlieger, “Multipolar plasmon resonances in supported silver particles: The case of Ag/alpha-Al2O3(0001),” Phys. Rev. B 65(23), 235424 (2002).
    [CrossRef]
  26. R. A. Ferrell, “Predicted Radiation of Plasma Oscillations in Metal Films,” Phys. Rev. 111(5), 1214–1222 (1958).
    [CrossRef]
  27. D. W. Berreman, “Infrared Absorption at Longitudinal Optic Frequency in Cubic Crystal Films,” Phys. Rev. 130(6), 2193–2198 (1963).
    [CrossRef]
  28. C. Kittel, Introduction to solid state physics (John Wiley & Sons, 1996).
  29. T. W. H. Oates and A. Mucklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005).
    [CrossRef]
  30. R. M. A. Azzam and N. M. Bashara, “Application of Generalized Ellipsometry to Anisotropic Crystals,” J. Opt. Soc. Am. 64(2), 128–133 (1974).
    [CrossRef]
  31. D. E. Aspnes, “Expanding horizons: new developments in ellipsometry and polarimetry,” Thin Solid Films 455, 3–13 (2004).
    [CrossRef]
  32. R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi A-Appl, Mat. 205, 720–727 (2008).
    [CrossRef]
  33. R. M. A. Azzam, “Propagation of Partially Polarized-Light through Anisotropic Media with or without Depolarization - Differential 4x4 Matrix Calculus,” J. Opt. Soc. Am. 68(12), 1756–1767 (1978).
    [CrossRef]
  34. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
    [CrossRef] [PubMed]
  35. M. Dressel, B. Gompf, D. Faltermeier, A. K. Tripathi, J. Pflaum, and M. Schubert, “Kramers-Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene,” Opt. Express 16(24), 19770–19778 (2008).
    [CrossRef] [PubMed]
  36. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34(7), 992–994 (2009).
    [CrossRef] [PubMed]

2010

M. Ranjan, T. W. H. Oates, S. Facsko, and W. Möller, “Optical properties of silver nanowire arrays with 35 nm periodicity,” Opt. Lett. 35(15), 2576–2578 (2010).
[CrossRef] [PubMed]

2009

I. Romero and F. J. García de Abajo, “Anisotropy and particle-size effects in nanostructured plasmonic metamaterials,” Opt. Express 17(24), 22012–22022 (2009).
[CrossRef] [PubMed]

A. Keller, R. Cuerno, S. Facsko, and W. Moller, “Anisotropic scaling of ripple morphologies on high-fluence sputtered silicon,” Phys. Rev. B 79(11), 7 (2009).
[CrossRef]

T. W. H. Oates, H. Sugime, and S. Noda, “Combinatorial Surface-Enhanced Raman Spectroscopy and Spectroscopic Ellipsometry of Silver Island Films,” J. Phys. Chem. C 113(12), 4820–4828 (2009).
[CrossRef]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34(7), 992–994 (2009).
[CrossRef] [PubMed]

2008

M. Dressel, B. Gompf, D. Faltermeier, A. K. Tripathi, J. Pflaum, and M. Schubert, “Kramers-Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene,” Opt. Express 16(24), 19770–19778 (2008).
[CrossRef] [PubMed]

R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi A-Appl, Mat. 205, 720–727 (2008).
[CrossRef]

Y. M. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
[CrossRef] [PubMed]

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930–930 (2008).
[CrossRef] [PubMed]

H. Wormeester, E. S. Kooij, and B. Poelsema, “Effective dielectric response of nanostructured layers,” Phys. Status Solidi A-Appl, Mat. 205, 756–763 (2008).
[CrossRef]

T. W. H. Oates, A. Keller, S. Noda, and S. Facsko, “Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates,” Appl. Phys. Lett. 93(6), 3 (2008).
[CrossRef]

2007

T. W. H. Oates, A. Keller, S. Facsko, and A. Mucklich, “Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption,” Plasmonics 2(2), 47–50 (2007).
[CrossRef]

2005

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005).
[CrossRef] [PubMed]

T. W. H. Oates and A. Mucklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005).
[CrossRef]

2004

D. E. Aspnes, “Expanding horizons: new developments in ellipsometry and polarimetry,” Thin Solid Films 455, 3–13 (2004).
[CrossRef]

2003

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11(7), 735–745 (2003).
[CrossRef] [PubMed]

2002

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 4 (2002).
[CrossRef]

R. Lazzari, S. Roux, I. Simonsen, J. Jupille, D. Bedeaux, and J. Vlieger, “Multipolar plasmon resonances in supported silver particles: The case of Ag/alpha-Al2O3(0001),” Phys. Rev. B 65(23), 235424 (2002).
[CrossRef]

2001

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000).
[CrossRef]

1999

R. W. Collins and J. Koh, “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. A 16(8), 1997–2006 (1999).
[CrossRef]

1998

L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313–314(1-2), 356–361 (1998).
[CrossRef]

1996

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[CrossRef]

1978

R. M. A. Azzam, “Propagation of Partially Polarized-Light through Anisotropic Media with or without Depolarization - Differential 4x4 Matrix Calculus,” J. Opt. Soc. Am. 68(12), 1756–1767 (1978).
[CrossRef]

1974

R. M. A. Azzam and N. M. Bashara, “Application of Generalized Ellipsometry to Anisotropic Crystals,” J. Opt. Soc. Am. 64(2), 128–133 (1974).
[CrossRef]

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical Effect of Substrate on Anomalous Absorption of Aggregated Silver Films,” Thin Solid Films 21(1), 173–187 (1974).
[CrossRef]

1972

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Effect of Dipole Interaction between Island Particles on Optical Properties of an Aggregated Silver Film,” Thin Solid Films 13(2), 261–264 (1972).
[CrossRef]

R. M. A. Azzam and N. M. Bashara, “Generalized Ellipsometry for Surfaces with Directional Preference - Application to Diffraction Gratings,” J. Opt. Soc. Am. 62(12), 1375–1375 (1972).
[CrossRef]

1963

D. W. Berreman, “Infrared Absorption at Longitudinal Optic Frequency in Cubic Crystal Films,” Phys. Rev. 130(6), 2193–2198 (1963).
[CrossRef]

1962

S. Yamaguchi, “Optical Absorption of Heat Treated Very Thin Silver Films and Its Dependence on Angle of Incidence,” J. Phys. Soc. Jpn. 17(7), 1172–1180 (1962).
[CrossRef]

1958

R. A. Ferrell, “Predicted Radiation of Plasma Oscillations in Metal Films,” Phys. Rev. 111(5), 1214–1222 (1958).
[CrossRef]

Anastasiadou, M.

R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi A-Appl, Mat. 205, 720–727 (2008).
[CrossRef]

Arwin, H.

L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313–314(1-2), 356–361 (1998).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, “Expanding horizons: new developments in ellipsometry and polarimetry,” Thin Solid Films 455, 3–13 (2004).
[CrossRef]

Azzam, R. M. A.

R. M. A. Azzam, “Propagation of Partially Polarized-Light through Anisotropic Media with or without Depolarization - Differential 4x4 Matrix Calculus,” J. Opt. Soc. Am. 68(12), 1756–1767 (1978).
[CrossRef]

R. M. A. Azzam and N. M. Bashara, “Application of Generalized Ellipsometry to Anisotropic Crystals,” J. Opt. Soc. Am. 64(2), 128–133 (1974).
[CrossRef]

R. M. A. Azzam and N. M. Bashara, “Generalized Ellipsometry for Surfaces with Directional Preference - Application to Diffraction Gratings,” J. Opt. Soc. Am. 62(12), 1375–1375 (1972).
[CrossRef]

Bartal, G.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930–930 (2008).
[CrossRef] [PubMed]

Y. M. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
[CrossRef] [PubMed]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, “Application of Generalized Ellipsometry to Anisotropic Crystals,” J. Opt. Soc. Am. 64(2), 128–133 (1974).
[CrossRef]

R. M. A. Azzam and N. M. Bashara, “Generalized Ellipsometry for Surfaces with Directional Preference - Application to Diffraction Gratings,” J. Opt. Soc. Am. 62(12), 1375–1375 (1972).
[CrossRef]

Bedeaux, D.

R. Lazzari, S. Roux, I. Simonsen, J. Jupille, D. Bedeaux, and J. Vlieger, “Multipolar plasmon resonances in supported silver particles: The case of Ag/alpha-Al2O3(0001),” Phys. Rev. B 65(23), 235424 (2002).
[CrossRef]

Ben Hatit, S.

R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi A-Appl, Mat. 205, 720–727 (2008).
[CrossRef]

Berreman, D. W.

D. W. Berreman, “Infrared Absorption at Longitudinal Optic Frequency in Cubic Crystal Films,” Phys. Rev. 130(6), 2193–2198 (1963).
[CrossRef]

Booso, B.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34(7), 992–994 (2009).
[CrossRef] [PubMed]

Carlsson, F.

L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313–314(1-2), 356–361 (1998).
[CrossRef]

Collins, R. W.

R. W. Collins and J. Koh, “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. A 16(8), 1997–2006 (1999).
[CrossRef]

Cuerno, R.

A. Keller, R. Cuerno, S. Facsko, and W. Moller, “Anisotropic scaling of ripple morphologies on high-fluence sputtered silicon,” Phys. Rev. B 79(11), 7 (2009).
[CrossRef]

De Martino, A.

R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi A-Appl, Mat. 205, 720–727 (2008).
[CrossRef]

Dolling, G.

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005).
[CrossRef] [PubMed]

Dressel, M.

M. Dressel, B. Gompf, D. Faltermeier, A. K. Tripathi, J. Pflaum, and M. Schubert, “Kramers-Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene,” Opt. Express 16(24), 19770–19778 (2008).
[CrossRef] [PubMed]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005).
[CrossRef] [PubMed]

Facsko, S.

M. Ranjan, T. W. H. Oates, S. Facsko, and W. Möller, “Optical properties of silver nanowire arrays with 35 nm periodicity,” Opt. Lett. 35(15), 2576–2578 (2010).
[CrossRef] [PubMed]

A. Keller, R. Cuerno, S. Facsko, and W. Moller, “Anisotropic scaling of ripple morphologies on high-fluence sputtered silicon,” Phys. Rev. B 79(11), 7 (2009).
[CrossRef]

T. W. H. Oates, A. Keller, S. Noda, and S. Facsko, “Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates,” Appl. Phys. Lett. 93(6), 3 (2008).
[CrossRef]

T. W. H. Oates, A. Keller, S. Facsko, and A. Mucklich, “Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption,” Plasmonics 2(2), 47–50 (2007).
[CrossRef]

Faltermeier, D.

M. Dressel, B. Gompf, D. Faltermeier, A. K. Tripathi, J. Pflaum, and M. Schubert, “Kramers-Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene,” Opt. Express 16(24), 19770–19778 (2008).
[CrossRef] [PubMed]

Ferrell, R. A.

R. A. Ferrell, “Predicted Radiation of Plasma Oscillations in Metal Films,” Phys. Rev. 111(5), 1214–1222 (1958).
[CrossRef]

García de Abajo, F. J.

I. Romero and F. J. García de Abajo, “Anisotropy and particle-size effects in nanostructured plasmonic metamaterials,” Opt. Express 17(24), 22012–22022 (2009).
[CrossRef] [PubMed]

Garcia-Caurel, E.

R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi A-Appl, Mat. 205, 720–727 (2008).
[CrossRef]

Gompf, B.

M. Dressel, B. Gompf, D. Faltermeier, A. K. Tripathi, J. Pflaum, and M. Schubert, “Kramers-Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene,” Opt. Express 16(24), 19770–19778 (2008).
[CrossRef] [PubMed]

Hofmann, T.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34(7), 992–994 (2009).
[CrossRef] [PubMed]

Inganäs, O.

L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313–314(1-2), 356–361 (1998).
[CrossRef]

Jellison, G. E.

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[CrossRef]

Joannopoulos, J. D.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 4 (2002).
[CrossRef]

Johnson, S. G.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 4 (2002).
[CrossRef]

Jupille, J.

R. Lazzari, S. Roux, I. Simonsen, J. Jupille, D. Bedeaux, and J. Vlieger, “Multipolar plasmon resonances in supported silver particles: The case of Ag/alpha-Al2O3(0001),” Phys. Rev. B 65(23), 235424 (2002).
[CrossRef]

Keller, A.

A. Keller, R. Cuerno, S. Facsko, and W. Moller, “Anisotropic scaling of ripple morphologies on high-fluence sputtered silicon,” Phys. Rev. B 79(11), 7 (2009).
[CrossRef]

T. W. H. Oates, A. Keller, S. Noda, and S. Facsko, “Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates,” Appl. Phys. Lett. 93(6), 3 (2008).
[CrossRef]

T. W. H. Oates, A. Keller, S. Facsko, and A. Mucklich, “Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption,” Plasmonics 2(2), 47–50 (2007).
[CrossRef]

Kinbara, A.

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical Effect of Substrate on Anomalous Absorption of Aggregated Silver Films,” Thin Solid Films 21(1), 173–187 (1974).
[CrossRef]

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Effect of Dipole Interaction between Island Particles on Optical Properties of an Aggregated Silver Film,” Thin Solid Films 13(2), 261–264 (1972).
[CrossRef]

Koh, J.

R. W. Collins and J. Koh, “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. A 16(8), 1997–2006 (1999).
[CrossRef]

Kooij, E. S.

H. Wormeester, E. S. Kooij, and B. Poelsema, “Effective dielectric response of nanostructured layers,” Phys. Status Solidi A-Appl, Mat. 205, 756–763 (2008).
[CrossRef]

Lazzari, R.

R. Lazzari, S. Roux, I. Simonsen, J. Jupille, D. Bedeaux, and J. Vlieger, “Multipolar plasmon resonances in supported silver particles: The case of Ag/alpha-Al2O3(0001),” Phys. Rev. B 65(23), 235424 (2002).
[CrossRef]

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005).
[CrossRef] [PubMed]

Liu, Y. M.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930–930 (2008).
[CrossRef] [PubMed]

Y. M. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
[CrossRef] [PubMed]

Liu, Z. W.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930–930 (2008).
[CrossRef] [PubMed]

Luo, C.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 4 (2002).
[CrossRef]

Modine, F. A.

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[CrossRef]

Moller, W.

A. Keller, R. Cuerno, S. Facsko, and W. Moller, “Anisotropic scaling of ripple morphologies on high-fluence sputtered silicon,” Phys. Rev. B 79(11), 7 (2009).
[CrossRef]

Möller, W.

M. Ranjan, T. W. H. Oates, S. Facsko, and W. Möller, “Optical properties of silver nanowire arrays with 35 nm periodicity,” Opt. Lett. 35(15), 2576–2578 (2010).
[CrossRef] [PubMed]

Mucklich, A.

T. W. H. Oates, A. Keller, S. Facsko, and A. Mucklich, “Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption,” Plasmonics 2(2), 47–50 (2007).
[CrossRef]

T. W. H. Oates and A. Mucklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005).
[CrossRef]

Noda, S.

T. W. H. Oates, H. Sugime, and S. Noda, “Combinatorial Surface-Enhanced Raman Spectroscopy and Spectroscopic Ellipsometry of Silver Island Films,” J. Phys. Chem. C 113(12), 4820–4828 (2009).
[CrossRef]

T. W. H. Oates, A. Keller, S. Noda, and S. Facsko, “Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates,” Appl. Phys. Lett. 93(6), 3 (2008).
[CrossRef]

Notomi, M.

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000).
[CrossRef]

Oates, T. W. H.

M. Ranjan, T. W. H. Oates, S. Facsko, and W. Möller, “Optical properties of silver nanowire arrays with 35 nm periodicity,” Opt. Lett. 35(15), 2576–2578 (2010).
[CrossRef] [PubMed]

T. W. H. Oates, H. Sugime, and S. Noda, “Combinatorial Surface-Enhanced Raman Spectroscopy and Spectroscopic Ellipsometry of Silver Island Films,” J. Phys. Chem. C 113(12), 4820–4828 (2009).
[CrossRef]

T. W. H. Oates, A. Keller, S. Noda, and S. Facsko, “Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates,” Appl. Phys. Lett. 93(6), 3 (2008).
[CrossRef]

T. W. H. Oates, A. Keller, S. Facsko, and A. Mucklich, “Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption,” Plasmonics 2(2), 47–50 (2007).
[CrossRef]

T. W. H. Oates and A. Mucklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005).
[CrossRef]

Ossikovski, R.

R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi A-Appl, Mat. 205, 720–727 (2008).
[CrossRef]

Pendry, J. B.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 4 (2002).
[CrossRef]

Pettersson, L. A. A.

L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313–314(1-2), 356–361 (1998).
[CrossRef]

Pflaum, J.

M. Dressel, B. Gompf, D. Faltermeier, A. K. Tripathi, J. Pflaum, and M. Schubert, “Kramers-Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene,” Opt. Express 16(24), 19770–19778 (2008).
[CrossRef] [PubMed]

Podolskiy, V. A.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11(7), 735–745 (2003).
[CrossRef] [PubMed]

Poelsema, B.

H. Wormeester, E. S. Kooij, and B. Poelsema, “Effective dielectric response of nanostructured layers,” Phys. Status Solidi A-Appl, Mat. 205, 756–763 (2008).
[CrossRef]

Ranjan, M.

M. Ranjan, T. W. H. Oates, S. Facsko, and W. Möller, “Optical properties of silver nanowire arrays with 35 nm periodicity,” Opt. Lett. 35(15), 2576–2578 (2010).
[CrossRef] [PubMed]

Romero, I.

I. Romero and F. J. García de Abajo, “Anisotropy and particle-size effects in nanostructured plasmonic metamaterials,” Opt. Express 17(24), 22012–22022 (2009).
[CrossRef] [PubMed]

Roux, S.

R. Lazzari, S. Roux, I. Simonsen, J. Jupille, D. Bedeaux, and J. Vlieger, “Multipolar plasmon resonances in supported silver particles: The case of Ag/alpha-Al2O3(0001),” Phys. Rev. B 65(23), 235424 (2002).
[CrossRef]

Sarangan, A.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34(7), 992–994 (2009).
[CrossRef] [PubMed]

Sarychev, A. K.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11(7), 735–745 (2003).
[CrossRef] [PubMed]

Schmidt, D.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34(7), 992–994 (2009).
[CrossRef] [PubMed]

Schubert, E.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34(7), 992–994 (2009).
[CrossRef] [PubMed]

Schubert, M.

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34(7), 992–994 (2009).
[CrossRef] [PubMed]

M. Dressel, B. Gompf, D. Faltermeier, A. K. Tripathi, J. Pflaum, and M. Schubert, “Kramers-Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene,” Opt. Express 16(24), 19770–19778 (2008).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Schurig, D.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[CrossRef] [PubMed]

Shalaev, V. M.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11(7), 735–745 (2003).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Simonsen, I.

R. Lazzari, S. Roux, I. Simonsen, J. Jupille, D. Bedeaux, and J. Vlieger, “Multipolar plasmon resonances in supported silver particles: The case of Ag/alpha-Al2O3(0001),” Phys. Rev. B 65(23), 235424 (2002).
[CrossRef]

Smith, D. R.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005).
[CrossRef] [PubMed]

Stacy, A. M.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930–930 (2008).
[CrossRef] [PubMed]

Sugime, H.

T. W. H. Oates, H. Sugime, and S. Noda, “Combinatorial Surface-Enhanced Raman Spectroscopy and Spectroscopic Ellipsometry of Silver Island Films,” J. Phys. Chem. C 113(12), 4820–4828 (2009).
[CrossRef]

Sun, C.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930–930 (2008).
[CrossRef] [PubMed]

Tripathi, A. K.

M. Dressel, B. Gompf, D. Faltermeier, A. K. Tripathi, J. Pflaum, and M. Schubert, “Kramers-Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene,” Opt. Express 16(24), 19770–19778 (2008).
[CrossRef] [PubMed]

Vlieger, J.

R. Lazzari, S. Roux, I. Simonsen, J. Jupille, D. Bedeaux, and J. Vlieger, “Multipolar plasmon resonances in supported silver particles: The case of Ag/alpha-Al2O3(0001),” Phys. Rev. B 65(23), 235424 (2002).
[CrossRef]

Wang, Y.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930–930 (2008).
[CrossRef] [PubMed]

Wegener, M.

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005).
[CrossRef] [PubMed]

Wormeester, H.

H. Wormeester, E. S. Kooij, and B. Poelsema, “Effective dielectric response of nanostructured layers,” Phys. Status Solidi A-Appl, Mat. 205, 756–763 (2008).
[CrossRef]

Yamaguchi, S.

S. Yamaguchi, “Optical Absorption of Heat Treated Very Thin Silver Films and Its Dependence on Angle of Incidence,” J. Phys. Soc. Jpn. 17(7), 1172–1180 (1962).
[CrossRef]

Yamaguchi, T.

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical Effect of Substrate on Anomalous Absorption of Aggregated Silver Films,” Thin Solid Films 21(1), 173–187 (1974).
[CrossRef]

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Effect of Dipole Interaction between Island Particles on Optical Properties of an Aggregated Silver Film,” Thin Solid Films 13(2), 261–264 (1972).
[CrossRef]

Yao, J.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930–930 (2008).
[CrossRef] [PubMed]

Yoshida, S.

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical Effect of Substrate on Anomalous Absorption of Aggregated Silver Films,” Thin Solid Films 21(1), 173–187 (1974).
[CrossRef]

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Effect of Dipole Interaction between Island Particles on Optical Properties of an Aggregated Silver Film,” Thin Solid Films 13(2), 261–264 (1972).
[CrossRef]

Zhang, X.

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930–930 (2008).
[CrossRef] [PubMed]

Y. M. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
[CrossRef] [PubMed]

Zhou, J. F.

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett.

T. W. H. Oates, A. Keller, S. Noda, and S. Facsko, “Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates,” Appl. Phys. Lett. 93(6), 3 (2008).
[CrossRef]

G. E. Jellison and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371–373 (1996).
[CrossRef]

J. Opt. Soc. Am.

R. M. A. Azzam and N. M. Bashara, “Generalized Ellipsometry for Surfaces with Directional Preference - Application to Diffraction Gratings,” J. Opt. Soc. Am. 62(12), 1375–1375 (1972).
[CrossRef]

R. M. A. Azzam and N. M. Bashara, “Application of Generalized Ellipsometry to Anisotropic Crystals,” J. Opt. Soc. Am. 64(2), 128–133 (1974).
[CrossRef]

R. M. A. Azzam, “Propagation of Partially Polarized-Light through Anisotropic Media with or without Depolarization - Differential 4x4 Matrix Calculus,” J. Opt. Soc. Am. 68(12), 1756–1767 (1978).
[CrossRef]

J. Opt. Soc. Am. A

R. W. Collins and J. Koh, “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” J. Opt. Soc. Am. A 16(8), 1997–2006 (1999).
[CrossRef]

J. Phys. Chem. C

T. W. H. Oates, H. Sugime, and S. Noda, “Combinatorial Surface-Enhanced Raman Spectroscopy and Spectroscopic Ellipsometry of Silver Island Films,” J. Phys. Chem. C 113(12), 4820–4828 (2009).
[CrossRef]

J. Phys. Soc. Jpn.

S. Yamaguchi, “Optical Absorption of Heat Treated Very Thin Silver Films and Its Dependence on Angle of Incidence,” J. Phys. Soc. Jpn. 17(7), 1172–1180 (1962).
[CrossRef]

Nanotechnology

T. W. H. Oates and A. Mucklich, “Evolution of plasmon resonances during plasma deposition of silver nanoparticles,” Nanotechnology 16(11), 2606–2611 (2005).
[CrossRef]

Opt. Express

M. Dressel, B. Gompf, D. Faltermeier, A. K. Tripathi, J. Pflaum, and M. Schubert, “Kramers-Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene,” Opt. Express 16(24), 19770–19778 (2008).
[CrossRef] [PubMed]

Y. M. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16(20), 15439–15448 (2008).
[CrossRef] [PubMed]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11(7), 735–745 (2003).
[CrossRef] [PubMed]

I. Romero and F. J. García de Abajo, “Anisotropy and particle-size effects in nanostructured plasmonic metamaterials,” Opt. Express 17(24), 22012–22022 (2009).
[CrossRef] [PubMed]

Opt. Lett.

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005).
[CrossRef] [PubMed]

M. Ranjan, T. W. H. Oates, S. Facsko, and W. Möller, “Optical properties of silver nanowire arrays with 35 nm periodicity,” Opt. Lett. 35(15), 2576–2578 (2010).
[CrossRef] [PubMed]

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34(7), 992–994 (2009).
[CrossRef] [PubMed]

Phys. Rev.

R. A. Ferrell, “Predicted Radiation of Plasma Oscillations in Metal Films,” Phys. Rev. 111(5), 1214–1222 (1958).
[CrossRef]

D. W. Berreman, “Infrared Absorption at Longitudinal Optic Frequency in Cubic Crystal Films,” Phys. Rev. 130(6), 2193–2198 (1963).
[CrossRef]

Phys. Rev. B

R. Lazzari, S. Roux, I. Simonsen, J. Jupille, D. Bedeaux, and J. Vlieger, “Multipolar plasmon resonances in supported silver particles: The case of Ag/alpha-Al2O3(0001),” Phys. Rev. B 65(23), 235424 (2002).
[CrossRef]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65(20), 4 (2002).
[CrossRef]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62(16), 10696–10705 (2000).
[CrossRef]

A. Keller, R. Cuerno, S. Facsko, and W. Moller, “Anisotropic scaling of ripple morphologies on high-fluence sputtered silicon,” Phys. Rev. B 79(11), 7 (2009).
[CrossRef]

Phys. Rev. Lett.

D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003).
[CrossRef] [PubMed]

Phys. Status Solidi A-Appl, Mat.

H. Wormeester, E. S. Kooij, and B. Poelsema, “Effective dielectric response of nanostructured layers,” Phys. Status Solidi A-Appl, Mat. 205, 756–763 (2008).
[CrossRef]

R. Ossikovski, M. Anastasiadou, S. Ben Hatit, E. Garcia-Caurel, and A. De Martino, “Depolarizing Mueller matrices: how to decompose them?” Phys. Status Solidi A-Appl, Mat. 205, 720–727 (2008).
[CrossRef]

Plasmonics

T. W. H. Oates, A. Keller, S. Facsko, and A. Mucklich, “Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption,” Plasmonics 2(2), 47–50 (2007).
[CrossRef]

Science

J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930–930 (2008).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Thin Solid Films

L. A. A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal,” Thin Solid Films 313–314(1-2), 356–361 (1998).
[CrossRef]

D. E. Aspnes, “Expanding horizons: new developments in ellipsometry and polarimetry,” Thin Solid Films 455, 3–13 (2004).
[CrossRef]

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Effect of Dipole Interaction between Island Particles on Optical Properties of an Aggregated Silver Film,” Thin Solid Films 13(2), 261–264 (1972).
[CrossRef]

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical Effect of Substrate on Anomalous Absorption of Aggregated Silver Films,” Thin Solid Films 21(1), 173–187 (1974).
[CrossRef]

Other

D. Bedeaux, and J. Vlieger, Optical properties of Surfaces (Imperial College Press, 2001).

C. Kittel, Introduction to solid state physics (John Wiley & Sons, 1996).

D. W. Lynch, and W. R. Hunter, in Handbook of Optical Constants of Solids, ed. Palik, E. D. (Academic Press, 1985).

R. M. A. Azzam, and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

SEM images of the samples A, B and C. Sample A shows a random distribution of silver particles while samples B and C show aligned nanospheres and nanorods, respectively. The scale bar is 200 nm in all images. The x direction is defined as parallel to the alignment, y is perpendicular, and the z direction is normal to the substrate plane.

Fig. 2
Fig. 2

(a) Ψ and (b) Δ data for sample A at 55°. The uniaxially anisotropic model accounts for the resonant feature near 3.5 eV. (c) and (d): VASE data and uniaxially anisotropic model fits for sample A with AOI from 15° to 75°.

Fig. 3
Fig. 3

Uniaxial DFs of sample (A) compared to those of bulk silver from ref [18].

Fig. 4
Fig. 4

Comparison of the measured off-diagonal MM element m31, with that calculated from the measured J elements for sample B at AOI = 75° and rotation angle, ϕ = 120°.

Fig. 5
Fig. 5

(a) Measured M elements at rotation angles of 0°, 30°, 60°, and 90° for sample B and (b) modeled values, normalized to m11. The off-diagonal elements are scaled by a factor of 20.

Fig. 6
Fig. 6

(a) Measured M elements at rotation angles of 0°, 30°, 60°, and 90° for sample C and (b) modeled values, normalized to m11. The off diagonal elements are scaled by a factor of 5.

Fig. 7
Fig. 7

Orthogonal elements of the dielectric tensor for samples (a) B and (b) C. The box in (b) shows a region where the signs of the real part of the in-plane tensors are opposite, suggesting the potential to fabricate indefinite materials with tunable properties.

Fig. 8
Fig. 8

Equifrequency curves for a plane wave in the x-y plane propagating in sample C at ω = 1.7 (positive isotropic ε, dashed curve) and 2.3 eV (indefinite ε , solid curve). At 1.7 eV the refracted wavevector (black arrow) and group velocity (magenta arrow) are parallel while at 2.3 eV the refracted wavevector (blue arrow) and group velocity (red arrow) are antiparallel.

Fig. 9
Fig. 9

a) Rotational symmetry of the in-plane and out-of-plane resonances in m31 for sample C at AOI = 75°. The symbols are measured data and the lines are a guide for the eye. b) Cross-sectional TEM of a sample similar to B (scale bar = 10nm)

Fig. 10
Fig. 10

Comparison of the tilt models for m13 for samples (a) B and (b) C. No-tilt (orthorhombic) and Euler rotation (co-ord. rotation) show little evidence of the feature above 3 eV, while the monoclinic model provides a better fit.

Tables (1)

Tables Icon

Table 1 Fitted values in orthogonal directions for samples A, B and C

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

[ E r p E r s ] = [ r p p r p s r s p r s s ] [ E i p E i s ]
ρ r p r s = tan Ψ exp ( i Δ)
S r = [ S 0 S 1 S 2 S 3 ] r = [ m 11 m 12 m 13 m 14 m 21 m 22 m 23 m 24 m 31 m 32 m 33 m 34 m 41 m 42 m 43 m 44 ] [ S 0 S 1 S 2 S 3 ] i = M S i
M = T ( J J * ) T 1
T = [ 1 0 0 1 1 0 0 1 0 1 1 0 0 i i 0 ]
k x 2 ε y + k y 2 ε x = ω 2 c 2
T = ( sin β A 0 0 ( sin 2 α A ) 1 2 0 cos β cos α 1 )
A = cos γ cos β cos α sin β

Metrics