Abstract

We demonstrated a novel optical switch with a reconfigurable dielectric liquid droplet. The device consists of a clear liquid droplet (glycerol) surrounded by a black liquid (dye-doped liquid crystal). In the voltage-off state, the incident light passing through the clear liquid droplet is absorbed by the black liquid, resulting in a dark state. In the voltage-on state, the dome of the clear liquid droplet is uplifted by the dielectric force to form a light pipe which in turn transmits the incident light. Upon removing the voltage, the droplet recovers to its original shape and the switch is closed. We also demonstrated a red color light switch with ~10:1 contrast ratio and ~300 ms response time. Devices based on such an operation mechanism will find attractive applications in light shutter, tunable iris, variable optical attenuators, and displays

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
    [CrossRef]
  2. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
    [CrossRef] [PubMed]
  3. D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
    [CrossRef]
  4. K.-H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494–2500 (2004).
    [CrossRef] [PubMed]
  5. D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on cured surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
    [CrossRef]
  6. C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
    [CrossRef] [PubMed]
  7. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [CrossRef] [PubMed]
  8. S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
    [CrossRef]
  9. Y. J. Lin, K. M. Chen, and S. T. Wu, “Broadband and polarization-independent beam steering using dielectrophoresis-tilted prism,” Opt. Express 17(10), 8651–8656 (2009).
    [CrossRef] [PubMed]
  10. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
    [CrossRef] [PubMed]
  11. R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
    [CrossRef] [PubMed]
  12. Y. H. Lin, J. K. Li, T. Y. Chu, and H. K. Hsu, “A bistable polarizer-free electro-optical switch using a droplet manipulation on a liquid crystal and polymer composite film,” Opt. Express 18(10), 10104–10111 (2010).
    [CrossRef] [PubMed]
  13. S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
    [CrossRef] [PubMed]
  14. H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
    [CrossRef] [PubMed]
  15. H. Ren and S. T. Wu, “Optical switch using a deformable liquid droplet,” Opt. Lett. 35(22), 3826–3828 (2010).
    [CrossRef] [PubMed]
  16. H. A. Pohl, Dielectrophoresis (Cambridge University, 1978).
  17. R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
    [CrossRef]
  18. S. T. Wu, and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

2010

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on cured surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[CrossRef]

Y. H. Lin, J. K. Li, T. Y. Chu, and H. K. Hsu, “A bistable polarizer-free electro-optical switch using a droplet manipulation on a liquid crystal and polymer composite film,” Opt. Express 18(10), 10104–10111 (2010).
[CrossRef] [PubMed]

H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
[CrossRef] [PubMed]

H. Ren and S. T. Wu, “Optical switch using a deformable liquid droplet,” Opt. Lett. 35(22), 3826–3828 (2010).
[CrossRef] [PubMed]

2009

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[CrossRef] [PubMed]

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[CrossRef]

Y. J. Lin, K. M. Chen, and S. T. Wu, “Broadband and polarization-independent beam steering using dielectrophoresis-tilted prism,” Opt. Express 17(10), 8651–8656 (2009).
[CrossRef] [PubMed]

2008

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
[CrossRef] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

2007

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[CrossRef] [PubMed]

2006

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[CrossRef] [PubMed]

2004

K.-H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494–2500 (2004).
[CrossRef] [PubMed]

2003

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[CrossRef] [PubMed]

1999

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[CrossRef]

Abeysinghe, D. C.

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[CrossRef] [PubMed]

Berdichevsky, Y.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Chen, K. M.

Y. J. Lin, K. M. Chen, and S. T. Wu, “Broadband and polarization-independent beam steering using dielectrophoresis-tilted prism,” Opt. Express 17(10), 8651–8656 (2009).
[CrossRef] [PubMed]

Cheng, C. C.

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[CrossRef] [PubMed]

Choi, J.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Chronis, N.

K.-H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494–2500 (2004).
[CrossRef] [PubMed]

Chu, T. Y.

Y. H. Lin, J. K. Li, T. Y. Chu, and H. K. Hsu, “A bistable polarizer-free electro-optical switch using a droplet manipulation on a liquid crystal and polymer composite film,” Opt. Express 18(10), 10104–10111 (2010).
[CrossRef] [PubMed]

De Nicola, S.

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
[CrossRef] [PubMed]

Feenstra, B. J.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[CrossRef] [PubMed]

Ferraro, P.

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
[CrossRef] [PubMed]

Finizio, A.

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
[CrossRef] [PubMed]

Grilli, S.

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
[CrossRef] [PubMed]

Haus, J. W.

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[CrossRef] [PubMed]

Hayes, R. A.

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[CrossRef] [PubMed]

Heikenfeld, J.

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[CrossRef] [PubMed]

Hsu, H. K.

Y. H. Lin, J. K. Li, T. Y. Chu, and H. K. Hsu, “A bistable polarizer-free electro-optical switch using a droplet manipulation on a liquid crystal and polymer composite film,” Opt. Express 18(10), 10104–10111 (2010).
[CrossRef] [PubMed]

Jeong, K.-H.

K.-H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494–2500 (2004).
[CrossRef] [PubMed]

Jiang, H.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on cured surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[CrossRef]

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

Lee, L. P.

K.-H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494–2500 (2004).
[CrossRef] [PubMed]

Li, C.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on cured surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[CrossRef]

Li, J. K.

Y. H. Lin, J. K. Li, T. Y. Chu, and H. K. Hsu, “A bistable polarizer-free electro-optical switch using a droplet manipulation on a liquid crystal and polymer composite film,” Opt. Express 18(10), 10104–10111 (2010).
[CrossRef] [PubMed]

Lien, V.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Lin, Y. H.

Y. H. Lin, J. K. Li, T. Y. Chu, and H. K. Hsu, “A bistable polarizer-free electro-optical switch using a droplet manipulation on a liquid crystal and polymer composite film,” Opt. Express 18(10), 10104–10111 (2010).
[CrossRef] [PubMed]

Lin, Y. J.

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[CrossRef] [PubMed]

Y. J. Lin, K. M. Chen, and S. T. Wu, “Broadband and polarization-independent beam steering using dielectrophoresis-tilted prism,” Opt. Express 17(10), 8651–8656 (2009).
[CrossRef] [PubMed]

Liu, G. L.

K.-H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494–2500 (2004).
[CrossRef] [PubMed]

Lo, Y.-H.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

Miccio, L.

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
[CrossRef] [PubMed]

Ren, H.

H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
[CrossRef] [PubMed]

H. Ren and S. T. Wu, “Optical switch using a deformable liquid droplet,” Opt. Lett. 35(22), 3826–3828 (2010).
[CrossRef] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

Reza, S. A.

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[CrossRef]

Riza, N. A.

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[CrossRef]

Sabnis, R. W.

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[CrossRef]

Smith, N. R.

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[CrossRef] [PubMed]

Vespini, V.

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
[CrossRef] [PubMed]

Wu, S. T.

H. Ren and S. T. Wu, “Optical switch using a deformable liquid droplet,” Opt. Lett. 35(22), 3826–3828 (2010).
[CrossRef] [PubMed]

H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
[CrossRef] [PubMed]

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[CrossRef] [PubMed]

Y. J. Lin, K. M. Chen, and S. T. Wu, “Broadband and polarization-independent beam steering using dielectrophoresis-tilted prism,” Opt. Express 17(10), 8651–8656 (2009).
[CrossRef] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

Xianyu, H.

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

Xu, S.

H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
[CrossRef] [PubMed]

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[CrossRef] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

Yeh, J. A.

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[CrossRef] [PubMed]

Zeng, X.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on cured surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[CrossRef]

Zhang, D.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

Zhu, D.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on cured surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[CrossRef]

Appl. Phys. Lett.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[CrossRef]

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[CrossRef]

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on cured surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010).
[CrossRef]

Displays

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[CrossRef]

Nature

R. A. Hayes and B. J. Feenstra, “Video-speed electronic paper based on electrowetting,” Nature 425(6956), 383–385 (2003).
[CrossRef] [PubMed]

Opt. Commun.

S. A. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[CrossRef]

Opt. Express

Y. J. Lin, K. M. Chen, and S. T. Wu, “Broadband and polarization-independent beam steering using dielectrophoresis-tilted prism,” Opt. Express 17(10), 8651–8656 (2009).
[CrossRef] [PubMed]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14(14), 6557–6563 (2006).
[CrossRef] [PubMed]

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[CrossRef] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[CrossRef] [PubMed]

K.-H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12(11), 2494–2500 (2004).
[CrossRef] [PubMed]

S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008).
[CrossRef] [PubMed]

Y. H. Lin, J. K. Li, T. Y. Chu, and H. K. Hsu, “A bistable polarizer-free electro-optical switch using a droplet manipulation on a liquid crystal and polymer composite film,” Opt. Express 18(10), 10104–10111 (2010).
[CrossRef] [PubMed]

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[CrossRef] [PubMed]

H. Ren, S. Xu, and S. T. Wu, “Deformable liquid droplets for optical beam control,” Opt. Express 18(11), 11904–11910 (2010).
[CrossRef] [PubMed]

Opt. Lett.

H. Ren and S. T. Wu, “Optical switch using a deformable liquid droplet,” Opt. Lett. 35(22), 3826–3828 (2010).
[CrossRef] [PubMed]

Other

H. A. Pohl, Dielectrophoresis (Cambridge University, 1978).

S. T. Wu, and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

Supplementary Material (2)

» Media 1: MPG (1114 KB)     
» Media 2: MPG (1101 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Droplet cell fabrication procedure and the droplet operation mechanism.

Fig. 2
Fig. 2

A droplet cell for proving the proposed operation mechanism at (a) V = 0, (b) V = 25 Volts, and (c) V = 40 Volts. (d) (Media 1) The dynamic response of the droplet with a pulsed voltage (40 Volts) applied to the cell. The droplet aperture is ~340 µm and cell gap is ~200 µm.

Fig. 3
Fig. 3

A droplet cell for red color light switch at voltages of (a) V = 0, (b) V = 60, (c) 38, (d) 33, and (e) V = 22 Volts. (f) (Media 2) Shows the dynamic response of the red droplet with a pulsed voltage (55 Volts) applied to the cell. The red droplet aperture ~260 µm and cell gap ~200 µm.

Fig. 4
Fig. 4

Measured voltage dependent light transmittance. The red arrow indicates voltage increasing or decreasing direction. The aperture of the red droplet is ~260 µm and the cell gap is ~200 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V = 1 12 π d ( D 2 + D b + b 2 )
D = 4 π V d

Metrics