Abstract

We fabricated a novel lateral-current-injection-type distributed feedback (DFB) laser with amorphous-Si (a-Si) surface grating as a step to realize membrane lasers. This laser consists of a thin GaInAsP core layer grown on a semi-insulating InP substrate and a 30-nm-thick a-Si surface layer for DFB grating. Under a room-temperature continuous-wave condition, a low threshold current of 7.0 mA and high efficiency of 43% from the front facet were obtained for a 2.0-μm stripe width and 300-μm cavity length. A small-signal modulation bandwidth of 4.8 GHz was obtained at a bias current of 30 mA.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. I. Resistance modeling,” IEEE Trans. Electron. Dev. 49(4), 590–597 (2002).
    [CrossRef]
  2. P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. II. Performance implications,” IEEE Trans. Electron. Dev. 49(4), 598–604 (2002).
    [CrossRef]
  3. D. A. B. Miller, “Device requirements of optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [CrossRef]
  4. G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Prediction of CMOS compatible on-chip optical interconnect,” Integr. VLSI J. 40(4), 434–446 (2007).
    [CrossRef]
  5. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  6. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
    [CrossRef] [PubMed]
  7. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
    [CrossRef]
  8. R. Katouf, N. Yamamoto, A. Kanno, N. Sekine, K. Akahane, H. Sotobayashi, T. Isu, and M. Tsuchiya, “Ultrahigh relative refractive index contrast GaAs nanowire waveguides,” Appl. Phys. Express 1, 122101 (2008).
    [CrossRef]
  9. H. Enomoto, K. Inoue, T. Okumura, H. D. Nguyen, N. Nishiyama, Y. Atsumi, S. Kondo, and S. Arai, “Properties of high index-contrast wired GaInAsP waveguides with benzocyclobutene on Si substrate,” The 21st IEEE International Conference on Indium Phosphide and Related Materials (IPRM2009), ThA1.4 (2009).
  10. T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Continuous wave operation of optically pumped membrane DFB laser,” Electron. Lett. 37(24), 1455–1457 (2001).
    [CrossRef]
  11. T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
    [CrossRef]
  12. T. Okamoto, T. Yamazaki, S. Sakamoto, S. Tamura, and S. Arai, “Low-threshold membrane BH-DFB laser arrays with precisely controlled wavelength over a wide range,” IEEE Photon. Technol. Lett. 16(5), 1242-1244 (2004).
    [CrossRef]
  13. S. Sakamoto, T. Okamoto, T. Yamazaki, S. Tamura, and S. Arai, “Multiple-wavelength membrane BH-DFB laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1174–1179 (2005).
    [CrossRef]
  14. S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
    [CrossRef]
  15. N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP distributed-feedback lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001).
    [CrossRef]
  16. S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
    [CrossRef]
  17. H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP membrane BH-DFB laser with air-bridge structure,” Jpn. J. Appl. Phys. 46, 1158–1160 (2007).
    [CrossRef]
  18. T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express 14(18), 8184–8188 (2006).
    [CrossRef] [PubMed]
  19. T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, and S. Arai, “Single-mode operation of GaInAsP/InP-membrane distributed feedback lasers bonded on silicon-on-insulator substrate with rib-waveguide structure,” Jpn. J. Appl. Phys. 46(48), L1206–L1208 (2007).
    [CrossRef]
  20. K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
    [CrossRef]
  21. E. H. Sargent, K. Oe, C. Caneau, and J. M. Xu, “OEIC-enabling LCI lasers with current guides: Combined theoretical-experimental investigation of internal operating mechanisms,” IEEE J. Quantum Electron. 34(7), 1280–1287 (1998).
    [CrossRef]
  22. T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
    [CrossRef] [PubMed]
  23. T. Okumura, H. Ito, D. Kondo, N. Nishiyama, and S. Arai, “Continuous wave operation of thin film lateral current injection lasers grown on semi-insulating InP substrate,” Jpn. J. Appl. Phys. 49(4), 040205 (2010).
    [CrossRef]
  24. T. Okumura, M. Kurokawa, D. Kondo, H. Ito, N. Nishiyama, and S. Arai, “Lateral current injection type GaInAsP/InP DFB lasers on SI-InP substrate,” The 21st IEEE International Conference on Indium Phosphide and Related Materials (IPRM2009), TuB2 (2009).
  25. S. Sakai, M. Umeno, and Y. Amemiya, “Measurement of diffusion coefficient and surface recombination velocity for p-InGaAsP grown on InP,” Jpn. J. Appl. Phys. 19(1), 109–113 (1980).
    [CrossRef]
  26. J. Kang, K. Inoue, Y. Atsumi, N. Nishiyama, and S. Arai, “Loss measurement of multiple layer a-Si waveguides,” International Conference on Solid State Devices and Materials (SSDM2010), D-8–2 (2010).
  27. N. Nishiyama, C. Caneau, and C. E. Zah, “Long Wavelength VCSELs on InP grown by MOCVD,” Proc. SPIE 5246, 10–17 (2003).
    [CrossRef]
  28. T. Okumura, D. Kondo, H. Ito, S. Lee, D. Takahashi, N. Nishiyama, and S. Arai, “Dynamic characteristics of lateral current injection laser,” The 37th International Symposium on Compound Semiconductors (ISCS 2010), WeE3–2 (2010).
  29. K. Ohira, N. Nunoya, and S. Arai, “Stable single-mode operation of distributed feedback lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1166–1171 (2003).
    [CrossRef]
  30. T. Shindo, S. Lee, D. Takahashi, N. Tajima, N. Nishiyama, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector laser with wirelike active regions,” IEEE Photon. Technol. Lett. 21(19), 1414–1416 (2009).
    [CrossRef]

2010

T. Okumura, H. Ito, D. Kondo, N. Nishiyama, and S. Arai, “Continuous wave operation of thin film lateral current injection lasers grown on semi-insulating InP substrate,” Jpn. J. Appl. Phys. 49(4), 040205 (2010).
[CrossRef]

2009

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

T. Shindo, S. Lee, D. Takahashi, N. Tajima, N. Nishiyama, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector laser with wirelike active regions,” IEEE Photon. Technol. Lett. 21(19), 1414–1416 (2009).
[CrossRef]

D. A. B. Miller, “Device requirements of optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

2008

R. Katouf, N. Yamamoto, A. Kanno, N. Sekine, K. Akahane, H. Sotobayashi, T. Isu, and M. Tsuchiya, “Ultrahigh relative refractive index contrast GaAs nanowire waveguides,” Appl. Phys. Express 1, 122101 (2008).
[CrossRef]

2007

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[CrossRef] [PubMed]

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Prediction of CMOS compatible on-chip optical interconnect,” Integr. VLSI J. 40(4), 434–446 (2007).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[CrossRef]

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP membrane BH-DFB laser with air-bridge structure,” Jpn. J. Appl. Phys. 46, 1158–1160 (2007).
[CrossRef]

T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, and S. Arai, “Single-mode operation of GaInAsP/InP-membrane distributed feedback lasers bonded on silicon-on-insulator substrate with rib-waveguide structure,” Jpn. J. Appl. Phys. 46(48), L1206–L1208 (2007).
[CrossRef]

2006

T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express 14(18), 8184–8188 (2006).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

2005

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

S. Sakamoto, T. Okamoto, T. Yamazaki, S. Tamura, and S. Arai, “Multiple-wavelength membrane BH-DFB laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1174–1179 (2005).
[CrossRef]

2004

T. Okamoto, T. Yamazaki, S. Sakamoto, S. Tamura, and S. Arai, “Low-threshold membrane BH-DFB laser arrays with precisely controlled wavelength over a wide range,” IEEE Photon. Technol. Lett. 16(5), 1242-1244 (2004).
[CrossRef]

2003

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

N. Nishiyama, C. Caneau, and C. E. Zah, “Long Wavelength VCSELs on InP grown by MOCVD,” Proc. SPIE 5246, 10–17 (2003).
[CrossRef]

K. Ohira, N. Nunoya, and S. Arai, “Stable single-mode operation of distributed feedback lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1166–1171 (2003).
[CrossRef]

2002

P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. I. Resistance modeling,” IEEE Trans. Electron. Dev. 49(4), 590–597 (2002).
[CrossRef]

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. II. Performance implications,” IEEE Trans. Electron. Dev. 49(4), 598–604 (2002).
[CrossRef]

2001

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Continuous wave operation of optically pumped membrane DFB laser,” Electron. Lett. 37(24), 1455–1457 (2001).
[CrossRef]

N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP distributed-feedback lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001).
[CrossRef]

1998

E. H. Sargent, K. Oe, C. Caneau, and J. M. Xu, “OEIC-enabling LCI lasers with current guides: Combined theoretical-experimental investigation of internal operating mechanisms,” IEEE J. Quantum Electron. 34(7), 1280–1287 (1998).
[CrossRef]

1994

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
[CrossRef]

1980

S. Sakai, M. Umeno, and Y. Amemiya, “Measurement of diffusion coefficient and surface recombination velocity for p-InGaAsP grown on InP,” Jpn. J. Appl. Phys. 19(1), 109–113 (1980).
[CrossRef]

Akahane, K.

R. Katouf, N. Yamamoto, A. Kanno, N. Sekine, K. Akahane, H. Sotobayashi, T. Isu, and M. Tsuchiya, “Ultrahigh relative refractive index contrast GaAs nanowire waveguides,” Appl. Phys. Express 1, 122101 (2008).
[CrossRef]

Albonesi, D. H.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Prediction of CMOS compatible on-chip optical interconnect,” Integr. VLSI J. 40(4), 434–446 (2007).
[CrossRef]

Amemiya, Y.

S. Sakai, M. Umeno, and Y. Amemiya, “Measurement of diffusion coefficient and surface recombination velocity for p-InGaAsP grown on InP,” Jpn. J. Appl. Phys. 19(1), 109–113 (1980).
[CrossRef]

Arai, S.

T. Okumura, H. Ito, D. Kondo, N. Nishiyama, and S. Arai, “Continuous wave operation of thin film lateral current injection lasers grown on semi-insulating InP substrate,” Jpn. J. Appl. Phys. 49(4), 040205 (2010).
[CrossRef]

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

T. Shindo, S. Lee, D. Takahashi, N. Tajima, N. Nishiyama, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector laser with wirelike active regions,” IEEE Photon. Technol. Lett. 21(19), 1414–1416 (2009).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[CrossRef]

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP membrane BH-DFB laser with air-bridge structure,” Jpn. J. Appl. Phys. 46, 1158–1160 (2007).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, and S. Arai, “Single-mode operation of GaInAsP/InP-membrane distributed feedback lasers bonded on silicon-on-insulator substrate with rib-waveguide structure,” Jpn. J. Appl. Phys. 46(48), L1206–L1208 (2007).
[CrossRef]

T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express 14(18), 8184–8188 (2006).
[CrossRef] [PubMed]

S. Sakamoto, T. Okamoto, T. Yamazaki, S. Tamura, and S. Arai, “Multiple-wavelength membrane BH-DFB laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1174–1179 (2005).
[CrossRef]

T. Okamoto, T. Yamazaki, S. Sakamoto, S. Tamura, and S. Arai, “Low-threshold membrane BH-DFB laser arrays with precisely controlled wavelength over a wide range,” IEEE Photon. Technol. Lett. 16(5), 1242-1244 (2004).
[CrossRef]

K. Ohira, N. Nunoya, and S. Arai, “Stable single-mode operation of distributed feedback lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1166–1171 (2003).
[CrossRef]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP distributed-feedback lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001).
[CrossRef]

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Continuous wave operation of optically pumped membrane DFB laser,” Electron. Lett. 37(24), 1455–1457 (2001).
[CrossRef]

Bowers, J. E.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

Caneau, C.

N. Nishiyama, C. Caneau, and C. E. Zah, “Long Wavelength VCSELs on InP grown by MOCVD,” Proc. SPIE 5246, 10–17 (2003).
[CrossRef]

E. H. Sargent, K. Oe, C. Caneau, and J. M. Xu, “OEIC-enabling LCI lasers with current guides: Combined theoretical-experimental investigation of internal operating mechanisms,” IEEE J. Quantum Electron. 34(7), 1280–1287 (1998).
[CrossRef]

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
[CrossRef]

Chandra, G.

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. II. Performance implications,” IEEE Trans. Electron. Dev. 49(4), 598–604 (2002).
[CrossRef]

Chen, G.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Prediction of CMOS compatible on-chip optical interconnect,” Integr. VLSI J. 40(4), 434–446 (2007).
[CrossRef]

Chen, H.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Prediction of CMOS compatible on-chip optical interconnect,” Integr. VLSI J. 40(4), 434–446 (2007).
[CrossRef]

Cohen, O.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

Fang, A. W.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

Fauchet, P. M.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Prediction of CMOS compatible on-chip optical interconnect,” Integr. VLSI J. 40(4), 434–446 (2007).
[CrossRef]

Friedman, E. G.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Prediction of CMOS compatible on-chip optical interconnect,” Integr. VLSI J. 40(4), 434–446 (2007).
[CrossRef]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Haurylau, M.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Prediction of CMOS compatible on-chip optical interconnect,” Integr. VLSI J. 40(4), 434–446 (2007).
[CrossRef]

Isu, T.

R. Katouf, N. Yamamoto, A. Kanno, N. Sekine, K. Akahane, H. Sotobayashi, T. Isu, and M. Tsuchiya, “Ultrahigh relative refractive index contrast GaAs nanowire waveguides,” Appl. Phys. Express 1, 122101 (2008).
[CrossRef]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Ito, H.

T. Okumura, H. Ito, D. Kondo, N. Nishiyama, and S. Arai, “Continuous wave operation of thin film lateral current injection lasers grown on semi-insulating InP substrate,” Jpn. J. Appl. Phys. 49(4), 040205 (2010).
[CrossRef]

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

Jones, R.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

Kanemaru, M.

T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, and S. Arai, “Single-mode operation of GaInAsP/InP-membrane distributed feedback lasers bonded on silicon-on-insulator substrate with rib-waveguide structure,” Jpn. J. Appl. Phys. 46(48), L1206–L1208 (2007).
[CrossRef]

Kanno, A.

R. Katouf, N. Yamamoto, A. Kanno, N. Sekine, K. Akahane, H. Sotobayashi, T. Isu, and M. Tsuchiya, “Ultrahigh relative refractive index contrast GaAs nanowire waveguides,” Appl. Phys. Express 1, 122101 (2008).
[CrossRef]

Kapur, P.

P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. I. Resistance modeling,” IEEE Trans. Electron. Dev. 49(4), 590–597 (2002).
[CrossRef]

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. II. Performance implications,” IEEE Trans. Electron. Dev. 49(4), 598–604 (2002).
[CrossRef]

Katouf, R.

R. Katouf, N. Yamamoto, A. Kanno, N. Sekine, K. Akahane, H. Sotobayashi, T. Isu, and M. Tsuchiya, “Ultrahigh relative refractive index contrast GaAs nanowire waveguides,” Appl. Phys. Express 1, 122101 (2008).
[CrossRef]

Kondo, D.

T. Okumura, H. Ito, D. Kondo, N. Nishiyama, and S. Arai, “Continuous wave operation of thin film lateral current injection lasers grown on semi-insulating InP substrate,” Jpn. J. Appl. Phys. 49(4), 040205 (2010).
[CrossRef]

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

Kurokawa, M.

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

Lee, S.

T. Shindo, S. Lee, D. Takahashi, N. Tajima, N. Nishiyama, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector laser with wirelike active regions,” IEEE Photon. Technol. Lett. 21(19), 1414–1416 (2009).
[CrossRef]

Maruyama, T.

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, and S. Arai, “Single-mode operation of GaInAsP/InP-membrane distributed feedback lasers bonded on silicon-on-insulator substrate with rib-waveguide structure,” Jpn. J. Appl. Phys. 46(48), L1206–L1208 (2007).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[CrossRef]

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP membrane BH-DFB laser with air-bridge structure,” Jpn. J. Appl. Phys. 46, 1158–1160 (2007).
[CrossRef]

T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express 14(18), 8184–8188 (2006).
[CrossRef] [PubMed]

McVittie, J. P.

P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. I. Resistance modeling,” IEEE Trans. Electron. Dev. 49(4), 590–597 (2002).
[CrossRef]

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. II. Performance implications,” IEEE Trans. Electron. Dev. 49(4), 598–604 (2002).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Device requirements of optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

Miura, K.

T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express 14(18), 8184–8188 (2006).
[CrossRef] [PubMed]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Morshed, M.

N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP distributed-feedback lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001).
[CrossRef]

Naitoh, H.

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[CrossRef]

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP membrane BH-DFB laser with air-bridge structure,” Jpn. J. Appl. Phys. 46, 1158–1160 (2007).
[CrossRef]

Nakamura, M.

N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP distributed-feedback lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001).
[CrossRef]

Nelson, N. A.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Prediction of CMOS compatible on-chip optical interconnect,” Integr. VLSI J. 40(4), 434–446 (2007).
[CrossRef]

Nishimoto, Y.

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[CrossRef]

T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express 14(18), 8184–8188 (2006).
[CrossRef] [PubMed]

Nishiyama, N.

T. Okumura, H. Ito, D. Kondo, N. Nishiyama, and S. Arai, “Continuous wave operation of thin film lateral current injection lasers grown on semi-insulating InP substrate,” Jpn. J. Appl. Phys. 49(4), 040205 (2010).
[CrossRef]

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

T. Shindo, S. Lee, D. Takahashi, N. Tajima, N. Nishiyama, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector laser with wirelike active regions,” IEEE Photon. Technol. Lett. 21(19), 1414–1416 (2009).
[CrossRef]

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP membrane BH-DFB laser with air-bridge structure,” Jpn. J. Appl. Phys. 46, 1158–1160 (2007).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

N. Nishiyama, C. Caneau, and C. E. Zah, “Long Wavelength VCSELs on InP grown by MOCVD,” Proc. SPIE 5246, 10–17 (2003).
[CrossRef]

Noguchi, Y.

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
[CrossRef]

Nunoya, N.

K. Ohira, N. Nunoya, and S. Arai, “Stable single-mode operation of distributed feedback lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1166–1171 (2003).
[CrossRef]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP distributed-feedback lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001).
[CrossRef]

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Continuous wave operation of optically pumped membrane DFB laser,” Electron. Lett. 37(24), 1455–1457 (2001).
[CrossRef]

Oe, K.

E. H. Sargent, K. Oe, C. Caneau, and J. M. Xu, “OEIC-enabling LCI lasers with current guides: Combined theoretical-experimental investigation of internal operating mechanisms,” IEEE J. Quantum Electron. 34(7), 1280–1287 (1998).
[CrossRef]

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
[CrossRef]

Ohira, K.

K. Ohira, N. Nunoya, and S. Arai, “Stable single-mode operation of distributed feedback lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1166–1171 (2003).
[CrossRef]

Ohtake, M.

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[CrossRef]

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP membrane BH-DFB laser with air-bridge structure,” Jpn. J. Appl. Phys. 46, 1158–1160 (2007).
[CrossRef]

Okamoto, T.

S. Sakamoto, T. Okamoto, T. Yamazaki, S. Tamura, and S. Arai, “Multiple-wavelength membrane BH-DFB laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1174–1179 (2005).
[CrossRef]

T. Okamoto, T. Yamazaki, S. Sakamoto, S. Tamura, and S. Arai, “Low-threshold membrane BH-DFB laser arrays with precisely controlled wavelength over a wide range,” IEEE Photon. Technol. Lett. 16(5), 1242-1244 (2004).
[CrossRef]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Continuous wave operation of optically pumped membrane DFB laser,” Electron. Lett. 37(24), 1455–1457 (2001).
[CrossRef]

Okumura, T.

T. Okumura, H. Ito, D. Kondo, N. Nishiyama, and S. Arai, “Continuous wave operation of thin film lateral current injection lasers grown on semi-insulating InP substrate,” Jpn. J. Appl. Phys. 49(4), 040205 (2010).
[CrossRef]

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, and S. Arai, “Single-mode operation of GaInAsP/InP-membrane distributed feedback lasers bonded on silicon-on-insulator substrate with rib-waveguide structure,” Jpn. J. Appl. Phys. 46(48), L1206–L1208 (2007).
[CrossRef]

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP membrane BH-DFB laser with air-bridge structure,” Jpn. J. Appl. Phys. 46, 1158–1160 (2007).
[CrossRef]

T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express 14(18), 8184–8188 (2006).
[CrossRef] [PubMed]

Onodera, Y.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Continuous wave operation of optically pumped membrane DFB laser,” Electron. Lett. 37(24), 1455–1457 (2001).
[CrossRef]

Paniccia, M. J.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

Park, H.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

Raday, O.

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[CrossRef] [PubMed]

Sakai, S.

S. Sakai, M. Umeno, and Y. Amemiya, “Measurement of diffusion coefficient and surface recombination velocity for p-InGaAsP grown on InP,” Jpn. J. Appl. Phys. 19(1), 109–113 (1980).
[CrossRef]

Sakamoto, S.

T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, and S. Arai, “Single-mode operation of GaInAsP/InP-membrane distributed feedback lasers bonded on silicon-on-insulator substrate with rib-waveguide structure,” Jpn. J. Appl. Phys. 46(48), L1206–L1208 (2007).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP membrane BH-DFB laser with air-bridge structure,” Jpn. J. Appl. Phys. 46, 1158–1160 (2007).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[CrossRef]

T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express 14(18), 8184–8188 (2006).
[CrossRef] [PubMed]

S. Sakamoto, T. Okamoto, T. Yamazaki, S. Tamura, and S. Arai, “Multiple-wavelength membrane BH-DFB laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1174–1179 (2005).
[CrossRef]

T. Okamoto, T. Yamazaki, S. Sakamoto, S. Tamura, and S. Arai, “Low-threshold membrane BH-DFB laser arrays with precisely controlled wavelength over a wide range,” IEEE Photon. Technol. Lett. 16(5), 1242-1244 (2004).
[CrossRef]

Saraswat, K. C.

P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. I. Resistance modeling,” IEEE Trans. Electron. Dev. 49(4), 590–597 (2002).
[CrossRef]

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. II. Performance implications,” IEEE Trans. Electron. Dev. 49(4), 598–604 (2002).
[CrossRef]

Sargent, E. H.

E. H. Sargent, K. Oe, C. Caneau, and J. M. Xu, “OEIC-enabling LCI lasers with current guides: Combined theoretical-experimental investigation of internal operating mechanisms,” IEEE J. Quantum Electron. 34(7), 1280–1287 (1998).
[CrossRef]

Sekine, N.

R. Katouf, N. Yamamoto, A. Kanno, N. Sekine, K. Akahane, H. Sotobayashi, T. Isu, and M. Tsuchiya, “Ultrahigh relative refractive index contrast GaAs nanowire waveguides,” Appl. Phys. Express 1, 122101 (2008).
[CrossRef]

Shindo, T.

T. Shindo, S. Lee, D. Takahashi, N. Tajima, N. Nishiyama, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector laser with wirelike active regions,” IEEE Photon. Technol. Lett. 21(19), 1414–1416 (2009).
[CrossRef]

Shirao, M.

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Sotobayashi, H.

R. Katouf, N. Yamamoto, A. Kanno, N. Sekine, K. Akahane, H. Sotobayashi, T. Isu, and M. Tsuchiya, “Ultrahigh relative refractive index contrast GaAs nanowire waveguides,” Appl. Phys. Express 1, 122101 (2008).
[CrossRef]

Tajima, N.

T. Shindo, S. Lee, D. Takahashi, N. Tajima, N. Nishiyama, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector laser with wirelike active regions,” IEEE Photon. Technol. Lett. 21(19), 1414–1416 (2009).
[CrossRef]

Takahashi, D.

T. Shindo, S. Lee, D. Takahashi, N. Tajima, N. Nishiyama, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector laser with wirelike active regions,” IEEE Photon. Technol. Lett. 21(19), 1414–1416 (2009).
[CrossRef]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Tamura, S.

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

S. Sakamoto, T. Okamoto, T. Yamazaki, S. Tamura, and S. Arai, “Multiple-wavelength membrane BH-DFB laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1174–1179 (2005).
[CrossRef]

T. Okamoto, T. Yamazaki, S. Sakamoto, S. Tamura, and S. Arai, “Low-threshold membrane BH-DFB laser arrays with precisely controlled wavelength over a wide range,” IEEE Photon. Technol. Lett. 16(5), 1242-1244 (2004).
[CrossRef]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP distributed-feedback lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001).
[CrossRef]

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Continuous wave operation of optically pumped membrane DFB laser,” Electron. Lett. 37(24), 1455–1457 (2001).
[CrossRef]

Tsuchiya, M.

R. Katouf, N. Yamamoto, A. Kanno, N. Sekine, K. Akahane, H. Sotobayashi, T. Isu, and M. Tsuchiya, “Ultrahigh relative refractive index contrast GaAs nanowire waveguides,” Appl. Phys. Express 1, 122101 (2008).
[CrossRef]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Umeno, M.

S. Sakai, M. Umeno, and Y. Amemiya, “Measurement of diffusion coefficient and surface recombination velocity for p-InGaAsP grown on InP,” Jpn. J. Appl. Phys. 19(1), 109–113 (1980).
[CrossRef]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Xu, J. M.

E. H. Sargent, K. Oe, C. Caneau, and J. M. Xu, “OEIC-enabling LCI lasers with current guides: Combined theoretical-experimental investigation of internal operating mechanisms,” IEEE J. Quantum Electron. 34(7), 1280–1287 (1998).
[CrossRef]

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Yamamoto, N.

R. Katouf, N. Yamamoto, A. Kanno, N. Sekine, K. Akahane, H. Sotobayashi, T. Isu, and M. Tsuchiya, “Ultrahigh relative refractive index contrast GaAs nanowire waveguides,” Appl. Phys. Express 1, 122101 (2008).
[CrossRef]

Yamazaki, T.

S. Sakamoto, T. Okamoto, T. Yamazaki, S. Tamura, and S. Arai, “Multiple-wavelength membrane BH-DFB laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1174–1179 (2005).
[CrossRef]

T. Okamoto, T. Yamazaki, S. Sakamoto, S. Tamura, and S. Arai, “Low-threshold membrane BH-DFB laser arrays with precisely controlled wavelength over a wide range,” IEEE Photon. Technol. Lett. 16(5), 1242-1244 (2004).
[CrossRef]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

Zah, C. E.

N. Nishiyama, C. Caneau, and C. E. Zah, “Long Wavelength VCSELs on InP grown by MOCVD,” Proc. SPIE 5246, 10–17 (2003).
[CrossRef]

Appl. Phys. Express

R. Katouf, N. Yamamoto, A. Kanno, N. Sekine, K. Akahane, H. Sotobayashi, T. Isu, and M. Tsuchiya, “Ultrahigh relative refractive index contrast GaAs nanowire waveguides,” Appl. Phys. Express 1, 122101 (2008).
[CrossRef]

Electron. Lett.

T. Okamoto, N. Nunoya, Y. Onodera, S. Tamura, and S. Arai, “Continuous wave operation of optically pumped membrane DFB laser,” Electron. Lett. 37(24), 1455–1457 (2001).
[CrossRef]

IEEE J. Quantum Electron.

E. H. Sargent, K. Oe, C. Caneau, and J. M. Xu, “OEIC-enabling LCI lasers with current guides: Combined theoretical-experimental investigation of internal operating mechanisms,” IEEE J. Quantum Electron. 34(7), 1280–1287 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

S. Sakamoto, T. Okamoto, T. Yamazaki, S. Tamura, and S. Arai, “Multiple-wavelength membrane BH-DFB laser arrays,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1174–1179 (2005).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP distributed-feedback lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001).
[CrossRef]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

K. Ohira, N. Nunoya, and S. Arai, “Stable single-mode operation of distributed feedback lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1166–1171 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Shindo, S. Lee, D. Takahashi, N. Tajima, N. Nishiyama, and S. Arai, “Low-threshold and high-efficiency operation of distributed reflector laser with wirelike active regions,” IEEE Photon. Technol. Lett. 21(19), 1414–1416 (2009).
[CrossRef]

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrates,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
[CrossRef]

T. Okamoto, T. Yamazaki, S. Sakamoto, S. Tamura, and S. Arai, “Low-threshold membrane BH-DFB laser arrays with precisely controlled wavelength over a wide range,” IEEE Photon. Technol. Lett. 16(5), 1242-1244 (2004).
[CrossRef]

IEEE Trans. Electron. Dev.

P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. I. Resistance modeling,” IEEE Trans. Electron. Dev. 49(4), 590–597 (2002).
[CrossRef]

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects. II. Performance implications,” IEEE Trans. Electron. Dev. 49(4), 598–604 (2002).
[CrossRef]

Integr. VLSI J.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Prediction of CMOS compatible on-chip optical interconnect,” Integr. VLSI J. 40(4), 434–446 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, T. Maruyama, N. Nishiyama, and S. Arai, “85 °C continuous-wave operation of GaInAsP/InP-membrane buried heterostructure distributed feedback lasers with polymer cladding layer,” Jpn. J. Appl. Phys. 46(47), L1155–L1157 (2007).
[CrossRef]

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP membrane BH-DFB laser with air-bridge structure,” Jpn. J. Appl. Phys. 46, 1158–1160 (2007).
[CrossRef]

T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, and S. Arai, “Single-mode operation of GaInAsP/InP-membrane distributed feedback lasers bonded on silicon-on-insulator substrate with rib-waveguide structure,” Jpn. J. Appl. Phys. 46(48), L1206–L1208 (2007).
[CrossRef]

T. Okumura, H. Ito, D. Kondo, N. Nishiyama, and S. Arai, “Continuous wave operation of thin film lateral current injection lasers grown on semi-insulating InP substrate,” Jpn. J. Appl. Phys. 49(4), 040205 (2010).
[CrossRef]

S. Sakai, M. Umeno, and Y. Amemiya, “Measurement of diffusion coefficient and surface recombination velocity for p-InGaAsP grown on InP,” Jpn. J. Appl. Phys. 19(1), 109–113 (1980).
[CrossRef]

Opt. Express

T. Okumura, M. Kurokawa, M. Shirao, D. Kondo, H. Ito, N. Nishiyama, T. Maruyama, and S. Arai, “Lateral current injection GaInAsP/InP laser on semi-insulating substrate for membrane-based photonic circuits,” Opt. Express 17(15), 12564–12570 (2009).
[CrossRef] [PubMed]

T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express 14(18), 8184–8188 (2006).
[CrossRef] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[CrossRef] [PubMed]

Proc. IEEE

D. A. B. Miller, “Device requirements of optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

Proc. SPIE

N. Nishiyama, C. Caneau, and C. E. Zah, “Long Wavelength VCSELs on InP grown by MOCVD,” Proc. SPIE 5246, 10–17 (2003).
[CrossRef]

Other

T. Okumura, D. Kondo, H. Ito, S. Lee, D. Takahashi, N. Nishiyama, and S. Arai, “Dynamic characteristics of lateral current injection laser,” The 37th International Symposium on Compound Semiconductors (ISCS 2010), WeE3–2 (2010).

J. Kang, K. Inoue, Y. Atsumi, N. Nishiyama, and S. Arai, “Loss measurement of multiple layer a-Si waveguides,” International Conference on Solid State Devices and Materials (SSDM2010), D-8–2 (2010).

T. Okumura, M. Kurokawa, D. Kondo, H. Ito, N. Nishiyama, and S. Arai, “Lateral current injection type GaInAsP/InP DFB lasers on SI-InP substrate,” The 21st IEEE International Conference on Indium Phosphide and Related Materials (IPRM2009), TuB2 (2009).

H. Enomoto, K. Inoue, T. Okumura, H. D. Nguyen, N. Nishiyama, Y. Atsumi, S. Kondo, and S. Arai, “Properties of high index-contrast wired GaInAsP waveguides with benzocyclobutene on Si substrate,” The 21st IEEE International Conference on Indium Phosphide and Related Materials (IPRM2009), ThA1.4 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic structures of LCI-DFB lasers with a-Si surface grating on Si and SI-InP substrates.

Fig. 2
Fig. 2

Fabrication process of LCI-DFB laser with a-Si surface grating

Fig. 3
Fig. 3

Cross-sectional SEM image of fabricated LCI-DFB laser with a-Si surface grating

Fig. 4
Fig. 4

(a) I-L and I-V curves and (b) lasing spectrum of LCI-DFB laser with a-Si surface grating

Fig. 5
Fig. 5

Cavity length dependence of threshold current of various LCI-DFB lasers with a-Si surface grating.

Fig. 6
Fig. 6

Direct modulation characteristics of LCI-DFB laser; (a) relaxation oscillation frequency as a function of square root of bias current and (b) small-signal modulation response.

Metrics