Abstract

Experimental work in turbid media has shown that trans-illumination images can be significantly improved by limiting light collection to a subset of photons which are minimally distorted by scattering. The literature details numerous schemes (commonly termed ballistic imaging), most often based on time-gating and/or spatially filtering the detected light. However, due to the complex nature of the detected signal, analysis of this optical filtering process has been heretofore limited to qualitative comparisons of image results. In this article we present the implementation of a complete system model for the simulation of light propagation, including both the scattering medium and all stages of the optical train. Validation data from ballistic imaging (BI) measurements of monodisperse scatterers with diameter, d = 0.7 µm, at optical depths 5, 10, and 14, are compared with model results, showing excellent agreement. In addition, the validated model is subsequently applied to a modified time-gated optical system to probe the comparative performance of the BI system used in validation and the modified BI system. This instrument comparison examines scatterers with diameters of 0.7 and 15 µm at optical depths 10 and 14, and highlights the benefits of each system design for these specific scattering conditions. These results show that the modified optics configuration is more suitable for particles which are much larger than the incident wavelength, d >> λ, while the configuration employed in the validation system provides a better contrast for particle diameters on the order of the wavelength, d ~λ, where the scattering process exhibits a more homogeneous phase function. The insights and predictions made available by the full numerical model are important for the design of optimized imaging systems suited to specific turbid media, and make possible the quantitative understanding of both the effects of light propagation in the measurement and the performance of the complete imaging system.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42(5), 825–840 (1997).
    [CrossRef] [PubMed]
  2. C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36(14), R207–R227 (2003).
    [CrossRef]
  3. R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” Ann. N. Y. Acad. Sci. 820(1 Imaging Brain), 248–271 (1997).
    [CrossRef] [PubMed]
  4. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
    [CrossRef]
  5. J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37(13), 2788–2797 (1998).
    [CrossRef]
  6. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, Hoboken, NJ, 2007).
  7. K. M. Yoo and R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15(6), 320–322 (1990).
    [CrossRef] [PubMed]
  8. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991).
    [CrossRef] [PubMed]
  9. G. E. Anderson, F. Liu, and R. R. Alfano, “Microscope imaging through highly scattering media,” Opt. Lett. 19(13), 981–983 (1994).
    [CrossRef] [PubMed]
  10. Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20(13), 1498–1500 (1995).
    [CrossRef] [PubMed]
  11. H. Ramachandran and A. Narayanan, “Two-dimensional imaging through turbid media using a continuous wave light source,” Opt. Commun. 154(5-6), 255–260 (1998).
    [CrossRef]
  12. S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: Dependence on scattering anisotropy,” Opt. Commun. 241(1-3), 1–9 (2004).
    [CrossRef]
  13. R. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12(3), 1036–1047 (1975).
    [CrossRef]
  14. M. A. Duguay and A. T. Mattick, “Ultrahigh speed photography of picosecond light pulses and echoes,” Appl. Opt. 10(9), 2162–2170 (1971).
    [CrossRef] [PubMed]
  15. L. M. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18(3), 241–243 (1993).
    [CrossRef] [PubMed]
  16. R. R. Alfano, X. Liang, L. Wang, and P. P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid media,” Science 264(5167), 1913–1915 (1994).
    [CrossRef] [PubMed]
  17. P. A. Galland, X. Liang, and L. Wang, “Time-resolved optical imaging of jet sprays and droplets in highly scattering medium,” Proc. Am. Soc. Mech. Eng. HTD-321,585–588, (1995).
  18. M. Paciaroni, “Time-gated Ballistic Imaging through scattering media with applications to liquid spray combustion” (Ph.D. Thesis, Colorado School of Mines, 2004).
  19. M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43(26), 5100–5109 (2004).
    [CrossRef] [PubMed]
  20. D. Sedarsky, M. Paciaroni, E. Berrocal, P. Petterson, J. Zelina, J. Gord, and M. Linne, “Model validation image data for breakup of a liquid jet in crossflow: part I,” Exp. Fluids 49(2), 391–408 (2010).
    [CrossRef]
  21. D. Sedarsky, J. Gord, C. Carter, T. R. Meyer, and M. A. Linne, “Fast-framing ballistic imaging of velocity in an aerated spray,” Opt. Lett. 34(18), 2748–2750 (2009).
    [CrossRef] [PubMed]
  22. M. Linne, D. Sedarsky, T. Meyer, J. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2010).
    [CrossRef]
  23. M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
    [CrossRef]
  24. M. A. Linne, M. Paciaroni, E. Berrocal, and D. Sedarsky, “Ballistic Imaging of Liquid Breakup Processes in Dense Sprays,” Proc. Combust. Inst. 32(2), 2147–2161 (2009).
    [CrossRef]
  25. Y. Kuga and A. Ishimaru, “Modulation transfer function and image transmission through randomly distributed spherical particles,” J. Opt. Soc. Am. A 2(12), 2330–2335 (1985).
    [CrossRef]
  26. P. Bruscaglioni, P. Donelli, A. Ismaelli, and G. Zaccanti, “Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium,” Appl. Opt. 32(15), 2813–2824 (1993).
    [CrossRef] [PubMed]
  27. J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19(4), 1081–1087 (1992).
    [CrossRef] [PubMed]
  28. J. C. Hebden and R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17(3), 351–356 (1990).
    [CrossRef] [PubMed]
  29. E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15(17), 10649–10665 (2007).
    [CrossRef] [PubMed]
  30. E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation,” Opt. Express 17(16), 13792–13809 (2009).
    [CrossRef] [PubMed]
  31. E. Berrocal, “Multiple scattering of light in optical diagnostics of dense sprays and other complex turbid media” (Ph.D. Thesis, Cranfield University, 2006).
  32. D. Sedarsky, Ballistic imaging of transient phenomena in turbid media (Ph.D. Thesis, Lund University, 2009).
  33. H. Urey, “Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams,” Appl. Opt. 43(3), 620–625 (2004).
    [CrossRef] [PubMed]
  34. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, London, 2000).
  35. D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
    [CrossRef] [PubMed]
  36. D. Barnhart, “Optica software,” http://www.opticasoftware.com .
  37. Wolfram Research, Inc., Mathematica, Version 7.0, Champaign, IL (2008).
  38. E. Hecht, Optics, 4th ed. (Addison Wesley Longman Inc., Reading, MA, 2002).
    [PubMed]

2010 (2)

D. Sedarsky, M. Paciaroni, E. Berrocal, P. Petterson, J. Zelina, J. Gord, and M. Linne, “Model validation image data for breakup of a liquid jet in crossflow: part I,” Exp. Fluids 49(2), 391–408 (2010).
[CrossRef]

M. Linne, D. Sedarsky, T. Meyer, J. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2010).
[CrossRef]

2009 (3)

M. A. Linne, M. Paciaroni, E. Berrocal, and D. Sedarsky, “Ballistic Imaging of Liquid Breakup Processes in Dense Sprays,” Proc. Combust. Inst. 32(2), 2147–2161 (2009).
[CrossRef]

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation,” Opt. Express 17(16), 13792–13809 (2009).
[CrossRef] [PubMed]

D. Sedarsky, J. Gord, C. Carter, T. R. Meyer, and M. A. Linne, “Fast-framing ballistic imaging of velocity in an aerated spray,” Opt. Lett. 34(18), 2748–2750 (2009).
[CrossRef] [PubMed]

2007 (1)

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15(17), 10649–10665 (2007).
[CrossRef] [PubMed]

2006 (1)

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[CrossRef]

2004 (4)

M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43(26), 5100–5109 (2004).
[CrossRef] [PubMed]

H. Urey, “Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams,” Appl. Opt. 43(3), 620–625 (2004).
[CrossRef] [PubMed]

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[CrossRef] [PubMed]

S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: Dependence on scattering anisotropy,” Opt. Commun. 241(1-3), 1–9 (2004).
[CrossRef]

2003 (1)

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36(14), R207–R227 (2003).
[CrossRef]

1998 (2)

J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37(13), 2788–2797 (1998).
[CrossRef]

H. Ramachandran and A. Narayanan, “Two-dimensional imaging through turbid media using a continuous wave light source,” Opt. Commun. 154(5-6), 255–260 (1998).
[CrossRef]

1997 (2)

R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” Ann. N. Y. Acad. Sci. 820(1 Imaging Brain), 248–271 (1997).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42(5), 825–840 (1997).
[CrossRef] [PubMed]

1995 (2)

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20(13), 1498–1500 (1995).
[CrossRef] [PubMed]

P. A. Galland, X. Liang, and L. Wang, “Time-resolved optical imaging of jet sprays and droplets in highly scattering medium,” Proc. Am. Soc. Mech. Eng. HTD-321,585–588, (1995).

1994 (2)

R. R. Alfano, X. Liang, L. Wang, and P. P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid media,” Science 264(5167), 1913–1915 (1994).
[CrossRef] [PubMed]

G. E. Anderson, F. Liu, and R. R. Alfano, “Microscope imaging through highly scattering media,” Opt. Lett. 19(13), 981–983 (1994).
[CrossRef] [PubMed]

1993 (2)

L. M. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18(3), 241–243 (1993).
[CrossRef] [PubMed]

P. Bruscaglioni, P. Donelli, A. Ismaelli, and G. Zaccanti, “Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium,” Appl. Opt. 32(15), 2813–2824 (1993).
[CrossRef] [PubMed]

1992 (1)

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19(4), 1081–1087 (1992).
[CrossRef] [PubMed]

1991 (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

1990 (3)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

K. M. Yoo and R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15(6), 320–322 (1990).
[CrossRef] [PubMed]

J. C. Hebden and R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17(3), 351–356 (1990).
[CrossRef] [PubMed]

1985 (1)

Y. Kuga and A. Ishimaru, “Modulation transfer function and image transmission through randomly distributed spherical particles,” J. Opt. Soc. Am. A 2(12), 2330–2335 (1985).
[CrossRef]

1975 (1)

R. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12(3), 1036–1047 (1975).
[CrossRef]

1971 (1)

M. A. Duguay and A. T. Mattick, “Ultrahigh speed photography of picosecond light pulses and echoes,” Appl. Opt. 10(9), 2162–2170 (1971).
[CrossRef] [PubMed]

Alfano, R. R.

R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” Ann. N. Y. Acad. Sci. 820(1 Imaging Brain), 248–271 (1997).
[CrossRef] [PubMed]

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20(13), 1498–1500 (1995).
[CrossRef] [PubMed]

R. R. Alfano, X. Liang, L. Wang, and P. P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid media,” Science 264(5167), 1913–1915 (1994).
[CrossRef] [PubMed]

G. E. Anderson, F. Liu, and R. R. Alfano, “Microscope imaging through highly scattering media,” Opt. Lett. 19(13), 981–983 (1994).
[CrossRef] [PubMed]

L. M. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18(3), 241–243 (1993).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

K. M. Yoo and R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15(6), 320–322 (1990).
[CrossRef] [PubMed]

Anderson, G. E.

G. E. Anderson, F. Liu, and R. R. Alfano, “Microscope imaging through highly scattering media,” Opt. Lett. 19(13), 981–983 (1994).
[CrossRef] [PubMed]

Arridge, S. R.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42(5), 825–840 (1997).
[CrossRef] [PubMed]

Berrocal, E.

D. Sedarsky, M. Paciaroni, E. Berrocal, P. Petterson, J. Zelina, J. Gord, and M. Linne, “Model validation image data for breakup of a liquid jet in crossflow: part I,” Exp. Fluids 49(2), 391–408 (2010).
[CrossRef]

M. A. Linne, M. Paciaroni, E. Berrocal, and D. Sedarsky, “Ballistic Imaging of Liquid Breakup Processes in Dense Sprays,” Proc. Combust. Inst. 32(2), 2147–2161 (2009).
[CrossRef]

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation,” Opt. Express 17(16), 13792–13809 (2009).
[CrossRef] [PubMed]

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15(17), 10649–10665 (2007).
[CrossRef] [PubMed]

Bruscaglioni, P.

P. Bruscaglioni, P. Donelli, A. Ismaelli, and G. Zaccanti, “Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium,” Appl. Opt. 32(15), 2813–2824 (1993).
[CrossRef] [PubMed]

Carter, C.

M. Linne, D. Sedarsky, T. Meyer, J. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2010).
[CrossRef]

D. Sedarsky, J. Gord, C. Carter, T. R. Meyer, and M. A. Linne, “Fast-framing ballistic imaging of velocity in an aerated spray,” Opt. Lett. 34(18), 2748–2750 (2009).
[CrossRef] [PubMed]

Chachisvilis, M.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[CrossRef] [PubMed]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

Dai, H.

L. M. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18(3), 241–243 (1993).
[CrossRef] [PubMed]

Delpy, D. T.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42(5), 825–840 (1997).
[CrossRef] [PubMed]

Demos, S. G.

R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” Ann. N. Y. Acad. Sci. 820(1 Imaging Brain), 248–271 (1997).
[CrossRef] [PubMed]

Diver, J.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[CrossRef] [PubMed]

Donelli, P.

P. Bruscaglioni, P. Donelli, A. Ismaelli, and G. Zaccanti, “Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium,” Appl. Opt. 32(15), 2813–2824 (1993).
[CrossRef] [PubMed]

Duguay, M. A.

M. A. Duguay and A. T. Mattick, “Ultrahigh speed photography of picosecond light pulses and echoes,” Appl. Opt. 10(9), 2162–2170 (1971).
[CrossRef] [PubMed]

Dunsby, C.

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36(14), R207–R227 (2003).
[CrossRef]

French, P. M. W.

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36(14), R207–R227 (2003).
[CrossRef]

Galland, P. A.

P. A. Galland, X. Liang, and L. Wang, “Time-resolved optical imaging of jet sprays and droplets in highly scattering medium,” Proc. Am. Soc. Mech. Eng. HTD-321,585–588, (1995).

Gayen, S. K.

R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” Ann. N. Y. Acad. Sci. 820(1 Imaging Brain), 248–271 (1997).
[CrossRef] [PubMed]

Gord, J.

D. Sedarsky, M. Paciaroni, E. Berrocal, P. Petterson, J. Zelina, J. Gord, and M. Linne, “Model validation image data for breakup of a liquid jet in crossflow: part I,” Exp. Fluids 49(2), 391–408 (2010).
[CrossRef]

M. Linne, D. Sedarsky, T. Meyer, J. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2010).
[CrossRef]

D. Sedarsky, J. Gord, C. Carter, T. R. Meyer, and M. A. Linne, “Fast-framing ballistic imaging of velocity in an aerated spray,” Opt. Lett. 34(18), 2748–2750 (2009).
[CrossRef] [PubMed]

Hagen, N.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[CrossRef] [PubMed]

Hall, T.

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[CrossRef]

Hebden, J. C.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42(5), 825–840 (1997).
[CrossRef] [PubMed]

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19(4), 1081–1087 (1992).
[CrossRef] [PubMed]

J. C. Hebden and R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17(3), 351–356 (1990).
[CrossRef] [PubMed]

Ho, P. P.

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20(13), 1498–1500 (1995).
[CrossRef] [PubMed]

R. R. Alfano, X. Liang, L. Wang, and P. P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid media,” Science 264(5167), 1913–1915 (1994).
[CrossRef] [PubMed]

L. M. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18(3), 241–243 (1993).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Ishimaru, A.

Y. Kuga and A. Ishimaru, “Modulation transfer function and image transmission through randomly distributed spherical particles,” J. Opt. Soc. Am. A 2(12), 2330–2335 (1985).
[CrossRef]

Ismaelli, A.

P. Bruscaglioni, P. Donelli, A. Ismaelli, and G. Zaccanti, “Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium,” Appl. Opt. 32(15), 2813–2824 (1993).
[CrossRef] [PubMed]

Kruger, R. A.

J. C. Hebden and R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17(3), 351–356 (1990).
[CrossRef] [PubMed]

Kuga, Y.

Y. Kuga and A. Ishimaru, “Modulation transfer function and image transmission through randomly distributed spherical particles,” J. Opt. Soc. Am. A 2(12), 2330–2335 (1985).
[CrossRef]

Kumar, G.

J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37(13), 2788–2797 (1998).
[CrossRef]

Liang, X.

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20(13), 1498–1500 (1995).
[CrossRef] [PubMed]

P. A. Galland, X. Liang, and L. Wang, “Time-resolved optical imaging of jet sprays and droplets in highly scattering medium,” Proc. Am. Soc. Mech. Eng. HTD-321,585–588, (1995).

R. R. Alfano, X. Liang, L. Wang, and P. P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid media,” Science 264(5167), 1913–1915 (1994).
[CrossRef] [PubMed]

L. M. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18(3), 241–243 (1993).
[CrossRef] [PubMed]

Linne, M.

M. Linne, D. Sedarsky, T. Meyer, J. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2010).
[CrossRef]

D. Sedarsky, M. Paciaroni, E. Berrocal, P. Petterson, J. Zelina, J. Gord, and M. Linne, “Model validation image data for breakup of a liquid jet in crossflow: part I,” Exp. Fluids 49(2), 391–408 (2010).
[CrossRef]

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[CrossRef]

M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43(26), 5100–5109 (2004).
[CrossRef] [PubMed]

Linne, M. A.

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation,” Opt. Express 17(16), 13792–13809 (2009).
[CrossRef] [PubMed]

D. Sedarsky, J. Gord, C. Carter, T. R. Meyer, and M. A. Linne, “Fast-framing ballistic imaging of velocity in an aerated spray,” Opt. Lett. 34(18), 2748–2750 (2009).
[CrossRef] [PubMed]

M. A. Linne, M. Paciaroni, E. Berrocal, and D. Sedarsky, “Ballistic Imaging of Liquid Breakup Processes in Dense Sprays,” Proc. Combust. Inst. 32(2), 2147–2161 (2009).
[CrossRef]

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15(17), 10649–10665 (2007).
[CrossRef] [PubMed]

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Liu, F.

G. E. Anderson, F. Liu, and R. R. Alfano, “Microscope imaging through highly scattering media,” Opt. Lett. 19(13), 981–983 (1994).
[CrossRef] [PubMed]

Marchand, P.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[CrossRef] [PubMed]

Mattick, A. T.

M. A. Duguay and A. T. Mattick, “Ultrahigh speed photography of picosecond light pulses and echoes,” Appl. Opt. 10(9), 2162–2170 (1971).
[CrossRef] [PubMed]

Meglinski, I. V.

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation,” Opt. Express 17(16), 13792–13809 (2009).
[CrossRef] [PubMed]

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15(17), 10649–10665 (2007).
[CrossRef] [PubMed]

Meyer, T.

M. Linne, D. Sedarsky, T. Meyer, J. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2010).
[CrossRef]

Meyer, T. R.

D. Sedarsky, J. Gord, C. Carter, T. R. Meyer, and M. A. Linne, “Fast-framing ballistic imaging of velocity in an aerated spray,” Opt. Lett. 34(18), 2748–2750 (2009).
[CrossRef] [PubMed]

Mujumdar, S.

S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: Dependence on scattering anisotropy,” Opt. Commun. 241(1-3), 1–9 (2004).
[CrossRef]

Narayanan, A.

H. Ramachandran and A. Narayanan, “Two-dimensional imaging through turbid media using a continuous wave light source,” Opt. Commun. 154(5-6), 255–260 (1998).
[CrossRef]

Paciaroni, M.

D. Sedarsky, M. Paciaroni, E. Berrocal, P. Petterson, J. Zelina, J. Gord, and M. Linne, “Model validation image data for breakup of a liquid jet in crossflow: part I,” Exp. Fluids 49(2), 391–408 (2010).
[CrossRef]

M. A. Linne, M. Paciaroni, E. Berrocal, and D. Sedarsky, “Ballistic Imaging of Liquid Breakup Processes in Dense Sprays,” Proc. Combust. Inst. 32(2), 2147–2161 (2009).
[CrossRef]

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[CrossRef]

M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43(26), 5100–5109 (2004).
[CrossRef] [PubMed]

Paciaroni, M. E.

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation,” Opt. Express 17(16), 13792–13809 (2009).
[CrossRef] [PubMed]

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15(17), 10649–10665 (2007).
[CrossRef] [PubMed]

Parker, T.

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[CrossRef]

Petterson, P.

D. Sedarsky, M. Paciaroni, E. Berrocal, P. Petterson, J. Zelina, J. Gord, and M. Linne, “Model validation image data for breakup of a liquid jet in crossflow: part I,” Exp. Fluids 49(2), 391–408 (2010).
[CrossRef]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

Ramachandran, H.

S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: Dependence on scattering anisotropy,” Opt. Commun. 241(1-3), 1–9 (2004).
[CrossRef]

H. Ramachandran and A. Narayanan, “Two-dimensional imaging through turbid media using a continuous wave light source,” Opt. Commun. 154(5-6), 255–260 (1998).
[CrossRef]

Richardson, M. C.

R. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12(3), 1036–1047 (1975).
[CrossRef]

Sala, R.

R. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12(3), 1036–1047 (1975).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37(13), 2788–2797 (1998).
[CrossRef]

Sedarsky, D.

M. Linne, D. Sedarsky, T. Meyer, J. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2010).
[CrossRef]

D. Sedarsky, M. Paciaroni, E. Berrocal, P. Petterson, J. Zelina, J. Gord, and M. Linne, “Model validation image data for breakup of a liquid jet in crossflow: part I,” Exp. Fluids 49(2), 391–408 (2010).
[CrossRef]

D. Sedarsky, J. Gord, C. Carter, T. R. Meyer, and M. A. Linne, “Fast-framing ballistic imaging of velocity in an aerated spray,” Opt. Lett. 34(18), 2748–2750 (2009).
[CrossRef] [PubMed]

M. A. Linne, M. Paciaroni, E. Berrocal, and D. Sedarsky, “Ballistic Imaging of Liquid Breakup Processes in Dense Sprays,” Proc. Combust. Inst. 32(2), 2147–2161 (2009).
[CrossRef]

Sedarsky, D. L.

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation,” Opt. Express 17(16), 13792–13809 (2009).
[CrossRef] [PubMed]

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15(17), 10649–10665 (2007).
[CrossRef] [PubMed]

Urey, H.

H. Urey, “Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams,” Appl. Opt. 43(3), 620–625 (2004).
[CrossRef] [PubMed]

Wang, L.

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20(13), 1498–1500 (1995).
[CrossRef] [PubMed]

P. A. Galland, X. Liang, and L. Wang, “Time-resolved optical imaging of jet sprays and droplets in highly scattering medium,” Proc. Am. Soc. Mech. Eng. HTD-321,585–588, (1995).

R. R. Alfano, X. Liang, L. Wang, and P. P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid media,” Science 264(5167), 1913–1915 (1994).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Wang, L. M.

L. M. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18(3), 241–243 (1993).
[CrossRef] [PubMed]

Wang, Q. Z.

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20(13), 1498–1500 (1995).
[CrossRef] [PubMed]

Watson, D.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[CrossRef] [PubMed]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

Yoo, K. M.

K. M. Yoo and R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15(6), 320–322 (1990).
[CrossRef] [PubMed]

Zaccanti, G.

P. Bruscaglioni, P. Donelli, A. Ismaelli, and G. Zaccanti, “Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium,” Appl. Opt. 32(15), 2813–2824 (1993).
[CrossRef] [PubMed]

Zelina, J.

D. Sedarsky, M. Paciaroni, E. Berrocal, P. Petterson, J. Zelina, J. Gord, and M. Linne, “Model validation image data for breakup of a liquid jet in crossflow: part I,” Exp. Fluids 49(2), 391–408 (2010).
[CrossRef]

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Ann. N. Y. Acad. Sci. (1)

R. R. Alfano, S. G. Demos, and S. K. Gayen, “Advances in optical imaging of biomedical media,” Ann. N. Y. Acad. Sci. 820(1 Imaging Brain), 248–271 (1997).
[CrossRef] [PubMed]

Appl. Opt. (5)

J. M. Schmitt and G. Kumar, “Optical scattering properties of soft tissue: a discrete particle model,” Appl. Opt. 37(13), 2788–2797 (1998).
[CrossRef]

M. A. Duguay and A. T. Mattick, “Ultrahigh speed photography of picosecond light pulses and echoes,” Appl. Opt. 10(9), 2162–2170 (1971).
[CrossRef] [PubMed]

M. Paciaroni and M. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43(26), 5100–5109 (2004).
[CrossRef] [PubMed]

P. Bruscaglioni, P. Donelli, A. Ismaelli, and G. Zaccanti, “Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium,” Appl. Opt. 32(15), 2813–2824 (1993).
[CrossRef] [PubMed]

H. Urey, “Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams,” Appl. Opt. 43(3), 620–625 (2004).
[CrossRef] [PubMed]

Biophys. J. (1)

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[CrossRef] [PubMed]

Exp. Fluids (3)

D. Sedarsky, M. Paciaroni, E. Berrocal, P. Petterson, J. Zelina, J. Gord, and M. Linne, “Model validation image data for breakup of a liquid jet in crossflow: part I,” Exp. Fluids 49(2), 391–408 (2010).
[CrossRef]

M. Linne, D. Sedarsky, T. Meyer, J. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2010).
[CrossRef]

M. Linne, M. Paciaroni, T. Hall, and T. Parker, “Ballistic imaging of the near field in a diesel spray,” Exp. Fluids 40(6), 836–846 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

J. Opt. Soc. Am. A (1)

Y. Kuga and A. Ishimaru, “Modulation transfer function and image transmission through randomly distributed spherical particles,” J. Opt. Soc. Am. A 2(12), 2330–2335 (1985).
[CrossRef]

J. Phys. D (1)

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36(14), R207–R227 (2003).
[CrossRef]

Med. Phys. (2)

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19(4), 1081–1087 (1992).
[CrossRef] [PubMed]

J. C. Hebden and R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17(3), 351–356 (1990).
[CrossRef] [PubMed]

Opt. Commun. (2)

H. Ramachandran and A. Narayanan, “Two-dimensional imaging through turbid media using a continuous wave light source,” Opt. Commun. 154(5-6), 255–260 (1998).
[CrossRef]

S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: Dependence on scattering anisotropy,” Opt. Commun. 241(1-3), 1–9 (2004).
[CrossRef]

Opt. Express (2)

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15(17), 10649–10665 (2007).
[CrossRef] [PubMed]

E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation,” Opt. Express 17(16), 13792–13809 (2009).
[CrossRef] [PubMed]

Opt. Lett. (5)

D. Sedarsky, J. Gord, C. Carter, T. R. Meyer, and M. A. Linne, “Fast-framing ballistic imaging of velocity in an aerated spray,” Opt. Lett. 34(18), 2748–2750 (2009).
[CrossRef] [PubMed]

G. E. Anderson, F. Liu, and R. R. Alfano, “Microscope imaging through highly scattering media,” Opt. Lett. 19(13), 981–983 (1994).
[CrossRef] [PubMed]

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20(13), 1498–1500 (1995).
[CrossRef] [PubMed]

L. M. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18(3), 241–243 (1993).
[CrossRef] [PubMed]

K. M. Yoo and R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15(6), 320–322 (1990).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42(5), 825–840 (1997).
[CrossRef] [PubMed]

Phys. Rev. A (1)

R. Sala and M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12(3), 1036–1047 (1975).
[CrossRef]

Proc. Am. Soc. Mech. Eng. (1)

P. A. Galland, X. Liang, and L. Wang, “Time-resolved optical imaging of jet sprays and droplets in highly scattering medium,” Proc. Am. Soc. Mech. Eng. HTD-321,585–588, (1995).

Proc. Combust. Inst. (1)

M. A. Linne, M. Paciaroni, E. Berrocal, and D. Sedarsky, “Ballistic Imaging of Liquid Breakup Processes in Dense Sprays,” Proc. Combust. Inst. 32(2), 2147–2161 (2009).
[CrossRef]

Science (2)

R. R. Alfano, X. Liang, L. Wang, and P. P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid media,” Science 264(5167), 1913–1915 (1994).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991).
[CrossRef] [PubMed]

Other (8)

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley, Hoboken, NJ, 2007).

M. Paciaroni, “Time-gated Ballistic Imaging through scattering media with applications to liquid spray combustion” (Ph.D. Thesis, Colorado School of Mines, 2004).

E. Berrocal, “Multiple scattering of light in optical diagnostics of dense sprays and other complex turbid media” (Ph.D. Thesis, Cranfield University, 2006).

D. Sedarsky, Ballistic imaging of transient phenomena in turbid media (Ph.D. Thesis, Lund University, 2009).

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, London, 2000).

D. Barnhart, “Optica software,” http://www.opticasoftware.com .

Wolfram Research, Inc., Mathematica, Version 7.0, Champaign, IL (2008).

E. Hecht, Optics, 4th ed. (Addison Wesley Longman Inc., Reading, MA, 2002).
[PubMed]

Supplementary Material (4)

» Media 1: AVI (2612 KB)     
» Media 2: AVI (2834 KB)     
» Media 3: AVI (2820 KB)     
» Media 4: AVI (2910 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental arrangement used for ballistic imaging validation measurements: The input pulse [A], centered at 800 nm, with 80 fs pulse width and 1 mJ pulse energy, is divided by a beam-splitter, forming a strong ‘switch’ pulse and a weaker ‘image’ pulse. The image pulse is directed through a 10 mm long cuvette [B] containing a water solution of 0.7 μm polystyrene spheres. A test chart is immersed in the center of the cuvette and the transmitted light is subsequently collected and filtered by the lenses and OKE shutter. The OKE shutter (~2 ps) is driven by the switch pulse, which is directed through the Kerr cell containing liquid carbon disulfide. Spatial information from the test chart is transmitted to the screen and recorded by an EM-CCD camera. Details for each optical component are listed in Table 1.

Fig. 3
Fig. 3

(a) Representation of the temporal characteristics of the experimental (dots) and simulated pulses (dashed line). (b) Temporal characteristics of the CS2 OKE shutter measured experimentally (dots) [13] together with the 2ps constant shutter assumed in the simulation (dashed line).

Fig. 2
Fig. 2

Optical arrangement for the validation of the model with experimental results: light transmitted from the scattering volume (calculated by MC simulation) is collected by a lens placed at a distance, 1f, from the object plane and is projected to the detector face after crossing the OKE shutter. This optical arrangement is referred to as the “projection” system in the text. Note that the optical response of each optical component — related to the experimental set-up shown in Fig. 1 and detailed in Table 1 — is accurately simulated by the ray-tracing code.

Fig. 4
Fig. 4

Experiment and simulation comparison for the Contrast Transfer Function (a) and the Point-Spread Function (b) for the optical arrangement diagramed in Fig. 1 and Fig. 2. These validation results examine the response of this time-gated (~2ps) imaging instrument through a scattering volume containing 0.7 µm polystyrene spheres at optical depths of 5, 10 and 14.

Fig. 5
Fig. 5

Optical arrangement for the “One-to-one imaging” system: light transmitted from the scattering volume (calculated by MC simulation) is collected by a lens placed at a distance, 2f, from the object plane. This configuration forms an image that is relayed to the detector face at unit magnification. A second lens, L2, is used here to form an image of the 5 x 5 mm test chart at a convenient distance and collected by a 512 x 512 detector array. Note that the optical response of each optical component — detailed in Table 1 — is accurately simulated by the Ray-tracing code.

Fig. 6
Fig. 6

(a) Polar plot - logarithmic scale - of the angular Lorenz-Mie scattering phase functions for the two different sizes of polystyrene microspheres. The phase function for 0.7 µm (blue line) with broad-lobed, relative homogeneous angular distribution is shown superimposed on the 15 µm phase function (red line) which exhibits a strong forward scattering peak. Note that the phase functions shown here are circularly symmetric about the central (vertical) axis. The corresponding optical characteristics of the scattering particles and medium are shown in (b).

Fig. 7
Fig. 7

Calculated images and contrast for 0.7 µm scatterers: subfigure (a) and linked media (Media 1) show the Projection system; subfigure (b) and linked media (Media 2) show the one-to-one imaging system. Results are shown together with the corresponding plots of 1-D (summed) intensity vs. spatial period for the conditions listed on the left. The linked media files show these results over integration times from 0 to 4 ps.

Fig. 8
Fig. 8

Simulation results for one-to-one imaging and projection optical arrangements, for 0.7 µm scatterers, at OD = 10 and 14. Note that for the lower OD conditions shown in (a) and (b) the test pattern is discernible even when light collection is not filtered by the time gate.

Fig. 9
Fig. 9

Calculated images and contrast for 15 µm scatterers: subfigure (a) and linked media (Media 3) show the Projection system; subfigure (b) and linked media (Media 4) show the one-to-one imaging system. Results are shown together with the corresponding plots of 1-D (summed) intensity vs. spatial period for the conditions listed on the left. The linked media files show these results over integration times from 0 to 4 ps.

Fig. 10
Fig. 10

Simulation results for one-to-one imaging and projection optical arrangements for 15 µm scatterers, at OD = 10 and 14. Note that the time scales in (b) and (d) are given in femtoseconds.

Tables (1)

Tables Icon

Table 1 Ballistic Imaging optical components used in validation measurements

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C = I m a x I m i n I m i n + I m a x

Metrics