Abstract

PbS quantum dots are promising active emitters for use with high-quality Si nanophotonic devices in the telecommunications-band. Measurements of low quantum dot densities are limited both because of low fluorescence levels and the challenges of single photon detection at these wavelengths. Here, we report on methods using a fiber taper waveguide to efficiently extract PbS quantum dot photoluminescence. Temperature dependent ensemble measurements reveal an increase in emitted photons concomitant with an increase in excited-state lifetime from 58.9 ns at 293 K to 657 ns at 40 K. Measurements are also performed on quantum dots on high-Q (> 105) microdisks using cavity-resonant, pulsed excitation.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33, 773–780 (2000).
    [CrossRef] [PubMed]
  2. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17, 18093–18102 (2009).
    [CrossRef] [PubMed]
  3. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306R (2004).
    [CrossRef]
  4. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
    [CrossRef] [PubMed]
  5. J. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
    [CrossRef]
  6. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450, 862–865 (2007).
    [CrossRef] [PubMed]
  7. M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009).
    [CrossRef] [PubMed]
  8. C. Michael, K. Srinivasan, T. Johnson, O. Painter, K. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
    [CrossRef]
  9. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
    [CrossRef]
  10. H. Park, A. Fang, S. Kodama, and J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum well,” Opt. Express 13, 9460–9464 (2005).
    [CrossRef] [PubMed]
  11. E. H. Sargent, “Infrared quantum dots,” Adv. Mater. (Weinheim, Ger.) 17, 515–522 (2004).
    [CrossRef]
  12. J. S. Steckel, S. Coe-Sullivan, V. Bulović, and M. G. Bawendi, “1.3 μm to 1.55 μm Tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater. (Weinheim, Ger.) 15, 1862–1866 (2003).
    [CrossRef]
  13. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
    [CrossRef]
  14. I. Fushman, D. Englund, and J. Vučković, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
    [CrossRef]
  15. Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 mu m from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
    [CrossRef]
  16. A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849 (2009).
    [CrossRef] [PubMed]
  17. R. Bose, J. Gao, J. F. McMillan, A. D. Williams, and C. W. Wong, “Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED,” Opt. Express 17, 22474–22483 (2009).
    [CrossRef]
  18. M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96, 161108 (2010).
    [CrossRef]
  19. Purchased from Evident Technologies and identified in this paper to foster understanding, without implying recommendation or endorsement by NIST.
  20. F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
    [CrossRef]
  21. M. Davanço, and K. Srinivasan, “Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides,” Opt. Express 17, 10542–10563 (2009).
    [CrossRef] [PubMed]
  22. K. Nayak, P. Melentiev, M. Morinaga, F. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
    [CrossRef] [PubMed]
  23. M. Gregor, A. Kuhlicke, and O. Benson, “Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber,” Opt. Express 17, 24234–24243 (2009).
    [CrossRef]
  24. E. Vetsch, D. Reitz, G. Sagu’e, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
    [CrossRef] [PubMed]
  25. L. Turyanska, A. Patanè, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007).
    [CrossRef]
  26. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
    [CrossRef]
  27. R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 μm for controllable F¨orster energy transfer,” Nano Lett. 8, 2006–2011 (2008).
    [CrossRef] [PubMed]
  28. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
    [CrossRef]
  29. I. Chung, and M. G. Bawendi, “Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots,” Phys. Rev. B 70, 165304 (2004).
    [CrossRef]
  30. J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130, 4879–4885 (2008).
    [CrossRef] [PubMed]
  31. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
    [CrossRef]

2010

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96, 161108 (2010).
[CrossRef]

E. Vetsch, D. Reitz, G. Sagu’e, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

2009

M. Davanço, and K. Srinivasan, “Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides,” Opt. Express 17, 10542–10563 (2009).
[CrossRef] [PubMed]

M. Gregor, A. Kuhlicke, and O. Benson, “Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber,” Opt. Express 17, 24234–24243 (2009).
[CrossRef]

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849 (2009).
[CrossRef] [PubMed]

R. Bose, J. Gao, J. F. McMillan, A. D. Williams, and C. W. Wong, “Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED,” Opt. Express 17, 22474–22483 (2009).
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[CrossRef]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17, 18093–18102 (2009).
[CrossRef] [PubMed]

M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009).
[CrossRef] [PubMed]

2008

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130, 4879–4885 (2008).
[CrossRef] [PubMed]

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 μm for controllable F¨orster energy transfer,” Nano Lett. 8, 2006–2011 (2008).
[CrossRef] [PubMed]

2007

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 mu m from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

K. Nayak, P. Melentiev, M. Morinaga, F. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

L. Turyanska, A. Patanè, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007).
[CrossRef]

C. Michael, K. Srinivasan, T. Johnson, O. Painter, K. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450, 862–865 (2007).
[CrossRef] [PubMed]

2006

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

2005

I. Fushman, D. Englund, and J. Vučković, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
[CrossRef]

H. Park, A. Fang, S. Kodama, and J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum well,” Opt. Express 13, 9460–9464 (2005).
[CrossRef] [PubMed]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

2004

E. H. Sargent, “Infrared quantum dots,” Adv. Mater. (Weinheim, Ger.) 17, 515–522 (2004).
[CrossRef]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306R (2004).
[CrossRef]

I. Chung, and M. G. Bawendi, “Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots,” Phys. Rev. B 70, 165304 (2004).
[CrossRef]

2003

J. S. Steckel, S. Coe-Sullivan, V. Bulović, and M. G. Bawendi, “1.3 μm to 1.55 μm Tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater. (Weinheim, Ger.) 15, 1862–1866 (2003).
[CrossRef]

2001

J. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

2000

F. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33, 773–780 (2000).
[CrossRef] [PubMed]

1997

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
[CrossRef]

1977

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Abel, K. A.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849 (2009).
[CrossRef] [PubMed]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Asano, T.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17, 18093–18102 (2009).
[CrossRef] [PubMed]

Badolato, A.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Balykin, V.

K. Nayak, P. Melentiev, M. Morinaga, F. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

Balykin, V. I.

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306R (2004).
[CrossRef]

Bawendi, M. G.

I. Chung, and M. G. Bawendi, “Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots,” Phys. Rev. B 70, 165304 (2004).
[CrossRef]

J. S. Steckel, S. Coe-Sullivan, V. Bulović, and M. G. Bawendi, “1.3 μm to 1.55 μm Tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater. (Weinheim, Ger.) 15, 1862–1866 (2003).
[CrossRef]

Benson, O.

M. Gregor, A. Kuhlicke, and O. Benson, “Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber,” Opt. Express 17, 24234–24243 (2009).
[CrossRef]

Bhattacharya, P.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 mu m from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

Borselli, M.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306R (2004).
[CrossRef]

Bose, R.

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96, 161108 (2010).
[CrossRef]

R. Bose, J. Gao, J. F. McMillan, A. D. Williams, and C. W. Wong, “Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED,” Opt. Express 17, 22474–22483 (2009).
[CrossRef]

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 μm for controllable F¨orster energy transfer,” Nano Lett. 8, 2006–2011 (2008).
[CrossRef] [PubMed]

Bouwmeester, D.

M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Bowers, J.

H. Park, A. Fang, S. Kodama, and J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum well,” Opt. Express 13, 9460–9464 (2005).
[CrossRef] [PubMed]

Brune, M.

J. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

Bulovic, V.

J. S. Steckel, S. Coe-Sullivan, V. Bulović, and M. G. Bawendi, “1.3 μm to 1.55 μm Tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater. (Weinheim, Ger.) 15, 1862–1866 (2003).
[CrossRef]

Casson, J. L.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130, 4879–4885 (2008).
[CrossRef] [PubMed]

Chen, C. J.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 μm for controllable F¨orster energy transfer,” Nano Lett. 8, 2006–2011 (2008).
[CrossRef] [PubMed]

Choi, Y.-S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Chung, I.

I. Chung, and M. G. Bawendi, “Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots,” Phys. Rev. B 70, 165304 (2004).
[CrossRef]

Coe-Sullivan, S.

J. S. Steckel, S. Coe-Sullivan, V. Bulović, and M. G. Bawendi, “1.3 μm to 1.55 μm Tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater. (Weinheim, Ger.) 15, 1862–1866 (2003).
[CrossRef]

Coldren, L. A.

M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009).
[CrossRef] [PubMed]

Davanço, M.

M. Davanço, and K. Srinivasan, “Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides,” Opt. Express 17, 10542–10563 (2009).
[CrossRef] [PubMed]

Dawkins, S. T.

E. Vetsch, D. Reitz, G. Sagu’e, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef] [PubMed]

Dutta Gupta, S.

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

Englund, D.

I. Fushman, D. Englund, and J. Vučković, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
[CrossRef]

Fang, A.

H. Park, A. Fang, S. Kodama, and J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum well,” Opt. Express 13, 9460–9464 (2005).
[CrossRef] [PubMed]

Fushman, I.

I. Fushman, D. Englund, and J. Vučković, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
[CrossRef]

Gao, J.

R. Bose, J. Gao, J. F. McMillan, A. D. Williams, and C. W. Wong, “Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED,” Opt. Express 17, 22474–22483 (2009).
[CrossRef]

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 μm for controllable F¨orster energy transfer,” Nano Lett. 8, 2006–2011 (2008).
[CrossRef] [PubMed]

Gregor, M.

M. Gregor, A. Kuhlicke, and O. Benson, “Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber,” Opt. Express 17, 24234–24243 (2009).
[CrossRef]

Gupta, J. A.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[CrossRef]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

Hagino, H.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17, 18093–18102 (2009).
[CrossRef] [PubMed]

Hakuta, K.

K. Nayak, P. Melentiev, M. Morinaga, F. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

Haroche, S.

J. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

Henini, M.

L. Turyanska, A. Patanè, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007).
[CrossRef]

Hennequin, B.

L. Turyanska, A. Patanè, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007).
[CrossRef]

Hennessy, K.

C. Michael, K. Srinivasan, T. Johnson, O. Painter, K. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Hollingsworth, J. A.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130, 4879–4885 (2008).
[CrossRef] [PubMed]

Hu, E.

C. Michael, K. Srinivasan, T. Johnson, O. Painter, K. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

Hu, E. L.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Johnson, T.

C. Michael, K. Srinivasan, T. Johnson, O. Painter, K. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

Kien, F.

K. Nayak, P. Melentiev, M. Morinaga, F. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

Kim, H.

C. Michael, K. Srinivasan, T. Johnson, O. Painter, K. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

Klimov, V. I.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130, 4879–4885 (2008).
[CrossRef] [PubMed]

Kodama, S.

H. Park, A. Fang, S. Kodama, and J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum well,” Opt. Express 13, 9460–9464 (2005).
[CrossRef] [PubMed]

Kuhlicke, A.

M. Gregor, A. Kuhlicke, and O. Benson, “Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber,” Opt. Express 17, 24234–24243 (2009).
[CrossRef]

Layne, C. B.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Le Kien, F.

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

Lee, K.

C. Michael, K. Srinivasan, T. Johnson, O. Painter, K. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

Lowdermilk, W. H.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Ma, L.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

McMillan, J. F.

R. Bose, J. Gao, J. F. McMillan, A. D. Williams, and C. W. Wong, “Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED,” Opt. Express 17, 22474–22483 (2009).
[CrossRef]

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 μm for controllable F¨orster energy transfer,” Nano Lett. 8, 2006–2011 (2008).
[CrossRef] [PubMed]

Melentiev, P.

K. Nayak, P. Melentiev, M. Morinaga, F. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

Mi, Z.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 mu m from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

Michael, C.

C. Michael, K. Srinivasan, T. Johnson, O. Painter, K. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

Mirin, R. P.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

Morinaga, M.

K. Nayak, P. Melentiev, M. Morinaga, F. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

Murray, C. B.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 μm for controllable F¨orster energy transfer,” Nano Lett. 8, 2006–2011 (2008).
[CrossRef] [PubMed]

Nam, S. W.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

Nayak, K.

K. Nayak, P. Melentiev, M. Morinaga, F. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

Noda, S.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17, 18093–18102 (2009).
[CrossRef] [PubMed]

Painter, O.

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450, 862–865 (2007).
[CrossRef] [PubMed]

C. Michael, K. Srinivasan, T. Johnson, O. Painter, K. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306R (2004).
[CrossRef]

Park, H.

H. Park, A. Fang, S. Kodama, and J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum well,” Opt. Express 13, 9460–9464 (2005).
[CrossRef] [PubMed]

Patanè, A.

L. Turyanska, A. Patanè, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007).
[CrossRef]

Pattantyus-Abraham, A. G.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849 (2009).
[CrossRef] [PubMed]

Petroff, P. M.

M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Pietryga, J. M.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130, 4879–4885 (2008).
[CrossRef] [PubMed]

Polman, A.

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
[CrossRef]

Qiao, H.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849 (2009).
[CrossRef] [PubMed]

Raimond, J.

J. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

Rakher, M. T.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96, 161108 (2010).
[CrossRef]

M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Rauschenbeutel, A.

E. Vetsch, D. Reitz, G. Sagu’e, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef] [PubMed]

Reitz, D.

E. Vetsch, D. Reitz, G. Sagu’e, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef] [PubMed]

Rickey, K. M.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 μm for controllable F¨orster energy transfer,” Nano Lett. 8, 2006–2011 (2008).
[CrossRef] [PubMed]

Sagu’e, G.

E. Vetsch, D. Reitz, G. Sagu’e, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef] [PubMed]

Sargent, E. H.

E. H. Sargent, “Infrared quantum dots,” Adv. Mater. (Weinheim, Ger.) 17, 515–522 (2004).
[CrossRef]

Sato, Y.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17, 18093–18102 (2009).
[CrossRef] [PubMed]

Schaller, R. D.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130, 4879–4885 (2008).
[CrossRef] [PubMed]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagu’e, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef] [PubMed]

Schwall, R. E.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

Shan, J.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849 (2009).
[CrossRef] [PubMed]

Slattery, O.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

Srinivasan, K.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96, 161108 (2010).
[CrossRef]

M. Davanço, and K. Srinivasan, “Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides,” Opt. Express 17, 10542–10563 (2009).
[CrossRef] [PubMed]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450, 862–865 (2007).
[CrossRef] [PubMed]

C. Michael, K. Srinivasan, T. Johnson, O. Painter, K. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306R (2004).
[CrossRef]

Steckel, J. S.

J. S. Steckel, S. Coe-Sullivan, V. Bulović, and M. G. Bawendi, “1.3 μm to 1.55 μm Tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater. (Weinheim, Ger.) 15, 1862–1866 (2003).
[CrossRef]

Stevens, M. J.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

Stoltz, N. G.

M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009).
[CrossRef] [PubMed]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

Sugiya, T.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17, 18093–18102 (2009).
[CrossRef] [PubMed]

Takahashi, Y.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17, 18093–18102 (2009).
[CrossRef] [PubMed]

Talapin, D. V.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 μm for controllable F¨orster energy transfer,” Nano Lett. 8, 2006–2011 (2008).
[CrossRef] [PubMed]

Tanaka, Y.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17, 18093–18102 (2009).
[CrossRef] [PubMed]

Tang, X.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

Thomas, N. R.

L. Turyanska, A. Patanè, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007).
[CrossRef]

Turyanska, L.

L. Turyanska, A. Patanè, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007).
[CrossRef]

van Veggel, F. C. J. M.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849 (2009).
[CrossRef] [PubMed]

Vetsch, E.

E. Vetsch, D. Reitz, G. Sagu’e, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef] [PubMed]

Vuckovic, J.

I. Fushman, D. Englund, and J. Vučković, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
[CrossRef]

Wang, T.-S.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849 (2009).
[CrossRef] [PubMed]

Weber, M. J.

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

Werder, D. J.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130, 4879–4885 (2008).
[CrossRef] [PubMed]

Williams, A. D.

R. Bose, J. Gao, J. F. McMillan, A. D. Williams, and C. W. Wong, “Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED,” Opt. Express 17, 22474–22483 (2009).
[CrossRef]

Williams, D. J.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130, 4879–4885 (2008).
[CrossRef] [PubMed]

Wise, F.

F. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33, 773–780 (2000).
[CrossRef] [PubMed]

Wong, C. W.

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96, 161108 (2010).
[CrossRef]

R. Bose, J. Gao, J. F. McMillan, A. D. Williams, and C. W. Wong, “Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED,” Opt. Express 17, 22474–22483 (2009).
[CrossRef]

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 μm for controllable F¨orster energy transfer,” Nano Lett. 8, 2006–2011 (2008).
[CrossRef] [PubMed]

Wu, Z.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 mu m from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

Xu, J.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 mu m from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

Young, J. F.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849 (2009).
[CrossRef] [PubMed]

Zhu, T.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 mu m from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

Acc. Chem. Res.

F. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33, 773–780 (2000).
[CrossRef] [PubMed]

Adv. Mater. (Weinheim, Ger.)

E. H. Sargent, “Infrared quantum dots,” Adv. Mater. (Weinheim, Ger.) 17, 515–522 (2004).
[CrossRef]

J. S. Steckel, S. Coe-Sullivan, V. Bulović, and M. G. Bawendi, “1.3 μm to 1.55 μm Tunable electroluminescence from PbSe quantum dots embedded within an organic device,” Adv. Mater. (Weinheim, Ger.) 15, 1862–1866 (2003).
[CrossRef]

Appl. Phys. Lett.

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Spectroscopy of 1.55 μm PbS quantum dots on Si photonic crystal cavities with a fiber taper waveguide,” Appl. Phys. Lett. 96, 161108 (2010).
[CrossRef]

I. Fushman, D. Englund, and J. Vučković, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87, 241102 (2005).
[CrossRef]

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 mu m from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90, 171105 (2007).
[CrossRef]

C. Michael, K. Srinivasan, T. Johnson, O. Painter, K. Lee, K. Hennessy, H. Kim, and E. Hu, “Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities,” Appl. Phys. Lett. 90, 051108 (2007).
[CrossRef]

L. Turyanska, A. Patanè, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90, 101913 (2007).
[CrossRef]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006).
[CrossRef]

J. Am. Chem. Soc.

J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” J. Am. Chem. Soc. 130, 4879–4885 (2008).
[CrossRef] [PubMed]

J. Appl. Phys.

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82, 1–39 (1997).
[CrossRef]

Nano Lett.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9, 2849 (2009).
[CrossRef] [PubMed]

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 μm for controllable F¨orster energy transfer,” Nano Lett. 8, 2006–2011 (2008).
[CrossRef] [PubMed]

Nat. Photonics

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[CrossRef]

Nature

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450, 862–865 (2007).
[CrossRef] [PubMed]

Opt. Express

H. Park, A. Fang, S. Kodama, and J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum well,” Opt. Express 13, 9460–9464 (2005).
[CrossRef] [PubMed]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17, 18093–18102 (2009).
[CrossRef] [PubMed]

R. Bose, J. Gao, J. F. McMillan, A. D. Williams, and C. W. Wong, “Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED,” Opt. Express 17, 22474–22483 (2009).
[CrossRef]

M. Davanço, and K. Srinivasan, “Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides,” Opt. Express 17, 10542–10563 (2009).
[CrossRef] [PubMed]

K. Nayak, P. Melentiev, M. Morinaga, F. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[CrossRef] [PubMed]

M. Gregor, A. Kuhlicke, and O. Benson, “Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber,” Opt. Express 17, 24234–24243 (2009).
[CrossRef]

Phys. Rev. A

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[CrossRef]

Phys. Rev. B

I. Chung, and M. G. Bawendi, “Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots,” Phys. Rev. B 70, 165304 (2004).
[CrossRef]

C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
[CrossRef]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume, high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081306R (2004).
[CrossRef]

Phys. Rev. Lett.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[CrossRef] [PubMed]

M. T. Rakher, N. G. Stoltz, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots,” Phys. Rev. Lett. 102, 097403 (2009).
[CrossRef] [PubMed]

E. Vetsch, D. Reitz, G. Sagu’e, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[CrossRef] [PubMed]

Rev. Mod. Phys.

J. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[CrossRef]

Other

Purchased from Evident Technologies and identified in this paper to foster understanding, without implying recommendation or endorsement by NIST.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup composed of tunable-wavelength laser sources (980 nm, 1310 nm, and 1550 nm), electro-optic intensity modulator (EOM), wavelength division multiplexer (WDM), variable optical attenuator (VOA), fiber taper waveguide (FTW), cryostat, timing electronics, and measurement devices (spectrometer, photodiode (PD), and In-GaAs/InGaP single photon counting avalanche photodiode (APD)).

Fig. 2
Fig. 2

(a) Scanning electron microscope image of 450 nm diameter fiber taper waveguide with PbS QDs dried on surface (not visible). (b) Spectrum (60 s integration time) of QD PL at 40 K under 6.7 mW of 980 nm excitation. (c) Comparison of total PL counts (λ > 1400 nm) under 1 μW (blue) and 10 μW (maroon) 1310 nm excitation at 40 K, 185 K, and 293 K. Errors are contained within the point size. (d) Time-resolved PL traces taken at 40 K, 185 K, and 293 K with 2.1 ns, 22.8 fJ pulses at 1310 nm with 190 kHz repetition rate. The extracted decay times (errors given by 95% confidence interval) are 58.9 ns ±3.7 ns, 189.1 ns ±4.4 ns, and 657 ns ±10 ns for 293 K, 185 K, and 40 K respectively.

Fig. 3
Fig. 3

(a) SEM image of PbS QDs deposited on the surface of a Si microdisk, corresponding to an areal density of ≈ 2000 μm−2. (b) Transmission measurement of the FTW coupled to a Si microdisk from 1520 nm to 1630 nm, showing several cavity modes. A Q ≈ 1.1 ×105 doublet is shown in green and enlarged with fit in inset. (c) PL measurement of QD emission collected by the FTW in contact with the microdisk under pulsed excitation at 1304 nm. Inset: Transmission spectrum of the pump mode at 1304 nm with Q ≈ 9 ×103 and ΔT = 0.92 ±0.02. (d) Time-resolved PL decay trace measured with the InGaAs/InGaP APD.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g ( 2 ) ( τ ) = a ( t ) a ( t + τ ) a ( t + τ ) a ( t ) a ( t + τ ) a ( t + τ ) a ( t ) a ( t ) ,

Metrics