Abstract

Quantum cutting converting a ultraviolet photon into two near-infrared photons has been demonstrated by spectroscopic measurements in NaYF4:Ho3+,Yb3+ synthesized by hydrothermal method. Evidence is provided to confirm the occurrence of quantum cutting. Upon excitation of Ho3+ 5G4 level, near-infrared quantum cutting could occur through a two-step resonance energy transfer from Ho3+ to Yb3+ by cross relaxation, with a maximum quantum efficiency of 155.2%. This result reveals the possibility of violet to near-infrared quantum cutting with a quantum efficiency larger than 100% in Ho3+/Yb3+ codoped fluorides, suggesting the possible application in modifying the solar spectrum to enhance the efficiency of silicon solar cells.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
    [CrossRef]
  2. T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347–363 (2009).
    [CrossRef]
  3. B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
    [CrossRef]
  4. C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
    [CrossRef]
  5. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
    [CrossRef]
  6. X. Wei, S. Huang, Y. Chen, C. Guo, M. Yin, and W. Xu, “Energy transfer mechanism in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
    [CrossRef]
  7. Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express 18(9), 9671–9676 (2010).
    [CrossRef] [PubMed]
  8. D. Chen, Y. Yu, H. Lin, P. Huang, Z. Shan, and Y. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd(3+)-Yb(3+) couple,” Opt. Lett. 35(2), 220–222 (2010).
    [CrossRef] [PubMed]
  9. D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008).
    [CrossRef] [PubMed]
  10. X. Wei, J. Zhao, Y. Chen, M. Yin, and Y. Li, “Quantum cutting downconversion by cooperative energy transfer from Bi3+ to Yb3+ in Y2O3 phosphor,” Chin. Phys. B 19(7), 077804 (2010).
    [CrossRef]
  11. S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
    [CrossRef] [PubMed]
  12. D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
    [CrossRef]
  13. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073–3077 (2009).
    [CrossRef]
  14. J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
    [CrossRef]
  15. J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
    [CrossRef]
  16. C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly Uniform and Monodisperse α-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals: Hydrothermal Synthesis and Luminescent Properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
    [CrossRef] [PubMed]
  17. G. Blasse, and B. Grabmaier, Luminescent Materials, (Springer-Verlag, 1994).
  18. J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B 81(3), 035107 (2010).
    [CrossRef]

2010

X. Wei, S. Huang, Y. Chen, C. Guo, M. Yin, and W. Xu, “Energy transfer mechanism in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
[CrossRef]

Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express 18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

D. Chen, Y. Yu, H. Lin, P. Huang, Z. Shan, and Y. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd(3+)-Yb(3+) couple,” Opt. Lett. 35(2), 220–222 (2010).
[CrossRef] [PubMed]

X. Wei, J. Zhao, Y. Chen, M. Yin, and Y. Li, “Quantum cutting downconversion by cooperative energy transfer from Bi3+ to Yb3+ in Y2O3 phosphor,” Chin. Phys. B 19(7), 077804 (2010).
[CrossRef]

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[CrossRef]

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B 81(3), 035107 (2010).
[CrossRef]

2009

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073–3077 (2009).
[CrossRef]

T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347–363 (2009).
[CrossRef]

2008

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008).
[CrossRef] [PubMed]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

2007

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly Uniform and Monodisperse α-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals: Hydrothermal Synthesis and Luminescent Properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

2006

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[CrossRef]

J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[CrossRef]

2005

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[CrossRef]

2002

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[CrossRef]

Aarts, L.

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B 81(3), 035107 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073–3077 (2009).
[CrossRef]

Ameri, T.

T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347–363 (2009).
[CrossRef]

Arkhipov, V.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Beaucarne, G.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Biner, D.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[CrossRef]

J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[CrossRef]

Brabec, C. J.

T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347–363 (2009).
[CrossRef]

Chen, D.

D. Chen, Y. Yu, H. Lin, P. Huang, Z. Shan, and Y. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd(3+)-Yb(3+) couple,” Opt. Lett. 35(2), 220–222 (2010).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008).
[CrossRef] [PubMed]

Chen, J.

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

Chen, Y.

X. Wei, J. Zhao, Y. Chen, M. Yin, and Y. Li, “Quantum cutting downconversion by cooperative energy transfer from Bi3+ to Yb3+ in Y2O3 phosphor,” Chin. Phys. B 19(7), 077804 (2010).
[CrossRef]

X. Wei, S. Huang, Y. Chen, C. Guo, M. Yin, and W. Xu, “Energy transfer mechanism in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
[CrossRef]

del Canizo, C.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

den Hertog, M. I.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[CrossRef]

Dennler, G.

T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347–363 (2009).
[CrossRef]

Eilers, J. J.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[CrossRef]

Green, M. A.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[CrossRef]

Grimm, J.

J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[CrossRef]

Güdel, H. U.

J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[CrossRef]

Güdel, H.-U.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[CrossRef]

Guo, C.

X. Wei, S. Huang, Y. Chen, C. Guo, M. Yin, and W. Xu, “Energy transfer mechanism in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
[CrossRef]

Huang, P.

D. Chen, Y. Yu, H. Lin, P. Huang, Z. Shan, and Y. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd(3+)-Yb(3+) couple,” Opt. Lett. 35(2), 220–222 (2010).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

Huang, S.

X. Wei, S. Huang, Y. Chen, C. Guo, M. Yin, and W. Xu, “Energy transfer mechanism in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
[CrossRef]

Kox, M. H. F.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[CrossRef]

Krämer, K.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[CrossRef]

Krämer, K. W.

J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[CrossRef]

Lakshminarayana, G.

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

Li, C.

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly Uniform and Monodisperse α-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals: Hydrothermal Synthesis and Luminescent Properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

Li, Y.

X. Wei, J. Zhao, Y. Chen, M. Yin, and Y. Li, “Quantum cutting downconversion by cooperative energy transfer from Bi3+ to Yb3+ in Y2O3 phosphor,” Chin. Phys. B 19(7), 077804 (2010).
[CrossRef]

Lin, H.

D. Chen, Y. Yu, H. Lin, P. Huang, Z. Shan, and Y. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd(3+)-Yb(3+) couple,” Opt. Lett. 35(2), 220–222 (2010).
[CrossRef] [PubMed]

Lin, J.

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly Uniform and Monodisperse α-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals: Hydrothermal Synthesis and Luminescent Properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

Liu, X.

Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express 18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

Lungenschmied, C.

T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347–363 (2009).
[CrossRef]

Luo, J.

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

McCann, M.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Meijer, J. M.

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B 81(3), 035107 (2010).
[CrossRef]

Meijerink, A.

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B 81(3), 035107 (2010).
[CrossRef]

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073–3077 (2009).
[CrossRef]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[CrossRef]

Qiu, J.

Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express 18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

Quan, Z.

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly Uniform and Monodisperse α-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals: Hydrothermal Synthesis and Luminescent Properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

Richards, B. S.

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[CrossRef]

Shan, Z.

D. Chen, Y. Yu, H. Lin, P. Huang, Z. Shan, and Y. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd(3+)-Yb(3+) couple,” Opt. Lett. 35(2), 220–222 (2010).
[CrossRef] [PubMed]

Slaoui, A.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Strumpel, C.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Suyver, J. F.

J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[CrossRef]

Svrcek, V.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Teng, Y.

Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express 18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

Tobias, I.

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Trupke, T.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[CrossRef]

van der Eerden, J. P. J. M.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[CrossRef]

van der Ende, B. M.

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B 81(3), 035107 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073–3077 (2009).
[CrossRef]

van Veen, M. K.

J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[CrossRef]

van Wijngaarden, J. T.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[CrossRef]

Vergeer, P.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[CrossRef]

Vlugt, T. J. H.

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B 81(3), 035107 (2010).
[CrossRef]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[CrossRef]

Wang, Y.

D. Chen, Y. Yu, H. Lin, P. Huang, Z. Shan, and Y. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd(3+)-Yb(3+) couple,” Opt. Lett. 35(2), 220–222 (2010).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008).
[CrossRef] [PubMed]

Wei, X.

X. Wei, J. Zhao, Y. Chen, M. Yin, and Y. Li, “Quantum cutting downconversion by cooperative energy transfer from Bi3+ to Yb3+ in Y2O3 phosphor,” Chin. Phys. B 19(7), 077804 (2010).
[CrossRef]

X. Wei, S. Huang, Y. Chen, C. Guo, M. Yin, and W. Xu, “Energy transfer mechanism in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
[CrossRef]

Weng, F.

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

Würfel, P.

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[CrossRef]

Xu, W.

X. Wei, S. Huang, Y. Chen, C. Guo, M. Yin, and W. Xu, “Energy transfer mechanism in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
[CrossRef]

Yang, J.

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly Uniform and Monodisperse α-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals: Hydrothermal Synthesis and Luminescent Properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

Yang, P.

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly Uniform and Monodisperse α-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals: Hydrothermal Synthesis and Luminescent Properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

Ye, S.

Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express 18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

Yin, M.

X. Wei, S. Huang, Y. Chen, C. Guo, M. Yin, and W. Xu, “Energy transfer mechanism in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
[CrossRef]

X. Wei, J. Zhao, Y. Chen, M. Yin, and Y. Li, “Quantum cutting downconversion by cooperative energy transfer from Bi3+ to Yb3+ in Y2O3 phosphor,” Chin. Phys. B 19(7), 077804 (2010).
[CrossRef]

Yu, Y.

D. Chen, Y. Yu, H. Lin, P. Huang, Z. Shan, and Y. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd(3+)-Yb(3+) couple,” Opt. Lett. 35(2), 220–222 (2010).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

Zhao, J.

X. Wei, J. Zhao, Y. Chen, M. Yin, and Y. Li, “Quantum cutting downconversion by cooperative energy transfer from Bi3+ to Yb3+ in Y2O3 phosphor,” Chin. Phys. B 19(7), 077804 (2010).
[CrossRef]

Zhou, J.

Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express 18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

Zhu, B.

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073–3077 (2009).
[CrossRef]

Appl. Phys. Lett.

J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Krämer, H.-U. Güdel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+–Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett. 96(15), 151106 (2010).
[CrossRef]

Chin. Phys. B

X. Wei, J. Zhao, Y. Chen, M. Yin, and Y. Li, “Quantum cutting downconversion by cooperative energy transfer from Bi3+ to Yb3+ in Y2O3 phosphor,” Chin. Phys. B 19(7), 077804 (2010).
[CrossRef]

Energy Environ. Sci.

T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, “Organic tandem solar cells: A review,” Energy Environ. Sci. 2(4), 347–363 (2009).
[CrossRef]

Inorg. Chem.

C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly Uniform and Monodisperse α-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals: Hydrothermal Synthesis and Luminescent Properties,” Inorg. Chem. 46(16), 6329–6337 (2007).
[CrossRef] [PubMed]

J. Appl. Phys.

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008).
[CrossRef]

T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668 (2002).
[CrossRef]

X. Wei, S. Huang, Y. Chen, C. Guo, M. Yin, and W. Xu, “Energy transfer mechanism in Yb3+ doped YVO4 near-infrared downconversion phosphor,” J. Appl. Phys. 107(10), 103107 (2010).
[CrossRef]

J. Lumin.

J. F. Suyver, J. Grimm, M. K. van Veen, D. Biner, K. W. Krämer, and H. U. Güdel, “Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+,” J. Lumin. 117(1), 1–12 (2006).
[CrossRef]

Opt. Express

S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, and J. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express 16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express 18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

Opt. Lett.

D. Chen, Y. Yu, H. Lin, P. Huang, Z. Shan, and Y. Wang, “Ultraviolet-blue to near-infrared downconversion of Nd(3+)-Yb(3+) couple,” Opt. Lett. 35(2), 220–222 (2010).
[CrossRef] [PubMed]

D. Chen, Y. Wang, Y. Yu, P. Huang, and F. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett. 33(16), 1884–1886 (2008).
[CrossRef] [PubMed]

Phys. Rev. B

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+,” Phys. Rev. B 71(1), 014119 (2005).
[CrossRef]

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B 81(3), 035107 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells 90(9), 1189–1207 (2006).
[CrossRef]

C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency - An overview of available materials,” Sol. Energy Mater. Sol. Cells 91(4), 238–249 (2007).
[CrossRef]

Other

G. Blasse, and B. Grabmaier, Luminescent Materials, (Springer-Verlag, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy levels diagram of Ho3+ and Yb3+ showing possible mechanisms for a near-infrared quantum cutting. One ultraviolet photon absorbed by Ho3+ is converted into two Yb3+ near infrared photons through two-step sequential cross relaxations. Solid, dotted, curly arrows represent optical transition, cross relaxation, and multiphonon relaxation, respectively.

Fig. 2
Fig. 2

XRD patterns of the NaYF4:Ho3+,Yb3+ samples with different Yb3+ doping concentration compared with NaYF4 standard data JCPDS No.16-0334.

Fig. 3
Fig. 3

Visible to near infrared emission spectra of NaYF4: Ho3+,Yb3+ with various Yb3+ doping upon 359nm excitation.

Fig. 4
Fig. 4

Excitation spectra of Ho3+ emission at 540nm in NaYF4:Ho3+,Yb3+ with various Yb3+ doping. All the spectra are normalized to the 5G6/5F1 level.

Fig. 5
Fig. 5

Decay curves of (a) Ho3+ 5S2 emission at 540nm and (b) 5F5 emission at 650nm under 359nm excitation in NaYF4:Ho3+,Yb3+ with different Yb3+ concentration. Insets show the lifetime(τ) of 5S2 and 5F5 level, respectively.

Fig. 6
Fig. 6

Excitation spectra of Yb3+ 1013nm emission in NaYF4:0.5% Ho3+,20% Yb3+ and Ho3+ 1190nm emission in NaYF4:0.5% Ho3+. Both the spectra are normalized to the 5G6/5F1 level.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η Q E = η C R + η C R η T R ( F 5 5 ) + ( 1 η C R ) η T R ( S 5 2 ) ,

Metrics