Abstract

Bragg gratings with the bandwidth (FWHM) narrowed up to 79 pm were inscribed in double-cladding fiber with femtosecond radiation and a phase mask followed by an annealing treatment. With the annealing temperature below a critical value, the bandwidth of Bragg gratings induced by Type I-IR and Type II-IR index change was narrowed without the reduction of reflectivity. The bandwidth narrowing is due to the profile transformation of the refractive index modulation caused by the annealing treatment. This mechanism was verified by comparing bandwidth narrowing processes of FBGs written with different power densities.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos, and K. Kalli, Fiber Bragg gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  2. R. Kashyap, Fiber Bragg Gratings (Academic, 1999), 411–415.
  3. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
    [CrossRef]
  4. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [CrossRef]
  5. C. G. Askins, T.-E. Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, “Fiber Bragg reflectors prepared by a single excimer pulse,” Opt. Lett. 17, 833–835 (1992).
    [CrossRef] [PubMed]
  6. J. Albert, A. Schlzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in Phosphate Glass Single Mode Fiber,” Appl. Phys. Lett. 89, 101127 (2006).
    [CrossRef]
  7. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
    [CrossRef]
  8. M. Lenzner, J. Krger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
    [CrossRef]
  9. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 28, 333–339 (2001).
    [CrossRef]
  10. Y. H. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses,” Opt. Express 16, 21239–21247 (2008).
    [CrossRef] [PubMed]
  11. M. Bernier, R. Valle, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, “Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400nm femtosecond pulses and a phase-mask,” Opt. Express 17, 18887–18893 (2009).
    [CrossRef]
  12. E. Wikszak, J. Thomas, S. Klingebiel, B. Ortac¸, J. Limpert, S. Nolte, and A. Tüunermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett. 32, 2756–2758 (2007).
    [CrossRef] [PubMed]
  13. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
    [CrossRef]
  14. N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
    [CrossRef] [PubMed]
  15. N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Stable high-power continuouswave Yb3+-doped silica fiber laser utilizing a point-by-pointinscribed fiber Bragg grating,” Opt. Lett. 32, 1486–1488 (2007).
    [CrossRef] [PubMed]
  16. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29, 1730–1732 (2004).
    [CrossRef] [PubMed]
  17. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13, 5377–5385 (2005).
    [CrossRef] [PubMed]
  18. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Impact of index change saturation on the growth behavior of higher-order type I ultrafast induced fiber Bragg gratings,” J. Opt. Soc. Am. B 25, 877–883 (2008).
    [CrossRef]
  19. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
    [CrossRef] [PubMed]

2009 (1)

M. Bernier, R. Valle, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, “Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400nm femtosecond pulses and a phase-mask,” Opt. Express 17, 18887–18893 (2009).
[CrossRef]

2008 (3)

Y. H. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses,” Opt. Express 16, 21239–21247 (2008).
[CrossRef] [PubMed]

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Impact of index change saturation on the growth behavior of higher-order type I ultrafast induced fiber Bragg gratings,” J. Opt. Soc. Am. B 25, 877–883 (2008).
[CrossRef]

2007 (3)

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
[CrossRef] [PubMed]

N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Stable high-power continuouswave Yb3+-doped silica fiber laser utilizing a point-by-pointinscribed fiber Bragg grating,” Opt. Lett. 32, 1486–1488 (2007).
[CrossRef] [PubMed]

E. Wikszak, J. Thomas, S. Klingebiel, B. Ortac¸, J. Limpert, S. Nolte, and A. Tüunermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett. 32, 2756–2758 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Albert, A. Schlzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in Phosphate Glass Single Mode Fiber,” Appl. Phys. Lett. 89, 101127 (2006).
[CrossRef]

2005 (1)

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13, 5377–5385 (2005).
[CrossRef] [PubMed]

2004 (3)

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29, 1730–1732 (2004).
[CrossRef] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

2003 (1)

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[CrossRef] [PubMed]

2001 (1)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 28, 333–339 (2001).
[CrossRef]

1998 (1)

M. Lenzner, J. Krger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

1992 (1)

C. G. Askins, T.-E. Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, “Fiber Bragg reflectors prepared by a single excimer pulse,” Opt. Lett. 17, 833–835 (1992).
[CrossRef] [PubMed]

Albert, J.

J. Albert, A. Schlzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in Phosphate Glass Single Mode Fiber,” Appl. Phys. Lett. 89, 101127 (2006).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Askins, C. G.

C. G. Askins, T.-E. Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, “Fiber Bragg reflectors prepared by a single excimer pulse,” Opt. Lett. 17, 833–835 (1992).
[CrossRef] [PubMed]

Aslund, M.

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
[CrossRef] [PubMed]

Bashkansky, M.

C. G. Askins, T.-E. Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, “Fiber Bragg reflectors prepared by a single excimer pulse,” Opt. Lett. 17, 833–835 (1992).
[CrossRef] [PubMed]

Bennion, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

Bernier, M.

M. Bernier, R. Valle, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, “Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400nm femtosecond pulses and a phase-mask,” Opt. Express 17, 18887–18893 (2009).
[CrossRef]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Canning, J.

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

Cheng, Z.

M. Lenzner, J. Krger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Desrosiers, C.

M. Bernier, R. Valle, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, “Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400nm femtosecond pulses and a phase-mask,” Opt. Express 17, 18887–18893 (2009).
[CrossRef]

Ding, H.

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[CrossRef] [PubMed]

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

Franco, M.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 28, 333–339 (2001).
[CrossRef]

Friebele, E. J.

C. G. Askins, T.-E. Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, “Fiber Bragg reflectors prepared by a single excimer pulse,” Opt. Lett. 17, 833–835 (1992).
[CrossRef] [PubMed]

Fuerbach, A.

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
[CrossRef] [PubMed]

N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Stable high-power continuouswave Yb3+-doped silica fiber laser utilizing a point-by-pointinscribed fiber Bragg grating,” Opt. Lett. 32, 1486–1488 (2007).
[CrossRef] [PubMed]

Grattan, K. T. V.

Y. H. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses,” Opt. Express 16, 21239–21247 (2008).
[CrossRef] [PubMed]

Grobnic, D.

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Impact of index change saturation on the growth behavior of higher-order type I ultrafast induced fiber Bragg gratings,” J. Opt. Soc. Am. B 25, 877–883 (2008).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13, 5377–5385 (2005).
[CrossRef] [PubMed]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29, 1730–1732 (2004).
[CrossRef] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[CrossRef] [PubMed]

Henderson, G.

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[CrossRef] [PubMed]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Honkanen, S.

J. Albert, A. Schlzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in Phosphate Glass Single Mode Fiber,” Appl. Phys. Lett. 89, 101127 (2006).
[CrossRef]

Jackson, S. D.

N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Stable high-power continuouswave Yb3+-doped silica fiber laser utilizing a point-by-pointinscribed fiber Bragg grating,” Opt. Lett. 32, 1486–1488 (2007).
[CrossRef] [PubMed]

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
[CrossRef] [PubMed]

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Jovanovic, N.

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
[CrossRef] [PubMed]

N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Stable high-power continuouswave Yb3+-doped silica fiber laser utilizing a point-by-pointinscribed fiber Bragg grating,” Opt. Lett. 32, 1486–1488 (2007).
[CrossRef] [PubMed]

Kautek, W.

M. Lenzner, J. Krger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

Klingebiel, S.

E. Wikszak, J. Thomas, S. Klingebiel, B. Ortac¸, J. Limpert, S. Nolte, and A. Tüunermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett. 32, 2756–2758 (2007).
[CrossRef] [PubMed]

Krausz, F.

M. Lenzner, J. Krger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Krger, J.

M. Lenzner, J. Krger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Lenzner, M.

M. Lenzner, J. Krger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Li, Y. H.

Y. H. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses,” Opt. Express 16, 21239–21247 (2008).
[CrossRef] [PubMed]

Liao, C. R.

Y. H. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses,” Opt. Express 16, 21239–21247 (2008).
[CrossRef] [PubMed]

Limpert, J.

E. Wikszak, J. Thomas, S. Klingebiel, B. Ortac¸, J. Limpert, S. Nolte, and A. Tüunermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett. 32, 2756–2758 (2007).
[CrossRef] [PubMed]

Lu, P.

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[CrossRef] [PubMed]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

Marshall, G. D.

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
[CrossRef] [PubMed]

N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Stable high-power continuouswave Yb3+-doped silica fiber laser utilizing a point-by-pointinscribed fiber Bragg grating,” Opt. Lett. 32, 1486–1488 (2007).
[CrossRef] [PubMed]

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

Mihailov, S. J.

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Impact of index change saturation on the growth behavior of higher-order type I ultrafast induced fiber Bragg gratings,” J. Opt. Soc. Am. B 25, 877–883 (2008).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13, 5377–5385 (2005).
[CrossRef] [PubMed]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29, 1730–1732 (2004).
[CrossRef] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[CrossRef] [PubMed]

Morasse, B.

M. Bernier, R. Valle, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, “Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400nm femtosecond pulses and a phase-mask,” Opt. Express 17, 18887–18893 (2009).
[CrossRef]

Mourou, G.

M. Lenzner, J. Krger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Mysyrowicz, A.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 28, 333–339 (2001).
[CrossRef]

Nolte, S.

E. Wikszak, J. Thomas, S. Klingebiel, B. Ortac¸, J. Limpert, S. Nolte, and A. Tüunermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett. 32, 2756–2758 (2007).
[CrossRef] [PubMed]

Ortac¸, B.

E. Wikszak, J. Thomas, S. Klingebiel, B. Ortac¸, J. Limpert, S. Nolte, and A. Tüunermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett. 32, 2756–2758 (2007).
[CrossRef] [PubMed]

Peyghambarian, N.

J. Albert, A. Schlzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in Phosphate Glass Single Mode Fiber,” Appl. Phys. Lett. 89, 101127 (2006).
[CrossRef]

Prade, B.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 28, 333–339 (2001).
[CrossRef]

Putnam, M. A.

C. G. Askins, T.-E. Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, “Fiber Bragg reflectors prepared by a single excimer pulse,” Opt. Lett. 17, 833–835 (1992).
[CrossRef] [PubMed]

Saliminia, A.

M. Bernier, R. Valle, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, “Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400nm femtosecond pulses and a phase-mask,” Opt. Express 17, 18887–18893 (2009).
[CrossRef]

Sartania, S.

M. Lenzner, J. Krger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Schlzgen, A.

J. Albert, A. Schlzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in Phosphate Glass Single Mode Fiber,” Appl. Phys. Lett. 89, 101127 (2006).
[CrossRef]

Sheng, Y.

M. Bernier, R. Valle, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, “Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400nm femtosecond pulses and a phase-mask,” Opt. Express 17, 18887–18893 (2009).
[CrossRef]

Smelser, C. W.

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Impact of index change saturation on the growth behavior of higher-order type I ultrafast induced fiber Bragg gratings,” J. Opt. Soc. Am. B 25, 877–883 (2008).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13, 5377–5385 (2005).
[CrossRef] [PubMed]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29, 1730–1732 (2004).
[CrossRef] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[CrossRef] [PubMed]

Spielmann, Ch.

M. Lenzner, J. Krger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Sudrie, L.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 28, 333–339 (2001).
[CrossRef]

Sun, T.

Y. H. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses,” Opt. Express 16, 21239–21247 (2008).
[CrossRef] [PubMed]

Temyanko, V. L.

J. Albert, A. Schlzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in Phosphate Glass Single Mode Fiber,” Appl. Phys. Lett. 89, 101127 (2006).
[CrossRef]

Thomas, J.

E. Wikszak, J. Thomas, S. Klingebiel, B. Ortac¸, J. Limpert, S. Nolte, and A. Tüunermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett. 32, 2756–2758 (2007).
[CrossRef] [PubMed]

Tsai, T.-E.

C. G. Askins, T.-E. Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, “Fiber Bragg reflectors prepared by a single excimer pulse,” Opt. Lett. 17, 833–835 (1992).
[CrossRef] [PubMed]

Tüunermann, A.

E. Wikszak, J. Thomas, S. Klingebiel, B. Ortac¸, J. Limpert, S. Nolte, and A. Tüunermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett. 32, 2756–2758 (2007).
[CrossRef] [PubMed]

Unruh, J.

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[CrossRef] [PubMed]

Valle, R.

M. Bernier, R. Valle, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, “Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400nm femtosecond pulses and a phase-mask,” Opt. Express 17, 18887–18893 (2009).
[CrossRef]

Walker, R. B.

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
[CrossRef]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[CrossRef] [PubMed]

Wang, D. N.

Y. H. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses,” Opt. Express 16, 21239–21247 (2008).
[CrossRef] [PubMed]

Wikszak, E.

E. Wikszak, J. Thomas, S. Klingebiel, B. Ortac¸, J. Limpert, S. Nolte, and A. Tüunermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett. 32, 2756–2758 (2007).
[CrossRef] [PubMed]

Williams, G. M.

C. G. Askins, T.-E. Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, “Fiber Bragg reflectors prepared by a single excimer pulse,” Opt. Lett. 17, 833–835 (1992).
[CrossRef] [PubMed]

Withford, M. J.

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
[CrossRef] [PubMed]

N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Stable high-power continuouswave Yb3+-doped silica fiber laser utilizing a point-by-pointinscribed fiber Bragg grating,” Opt. Lett. 32, 1486–1488 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[CrossRef]

J. Albert, A. Schlzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in Phosphate Glass Single Mode Fiber,” Appl. Phys. Lett. 89, 101127 (2006).
[CrossRef]

Electron. Lett. (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[CrossRef]

J. Lightwave Technol. (1)

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22, 94–100 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Impact of index change saturation on the growth behavior of higher-order type I ultrafast induced fiber Bragg gratings,” J. Opt. Soc. Am. B 25, 877–883 (2008).
[CrossRef]

Laser Photon. Rev. (1)

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

Opt. Commun. (1)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun. 28, 333–339 (2001).
[CrossRef]

Opt. Express (3)

Y. H. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, “Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses,” Opt. Express 16, 21239–21247 (2008).
[CrossRef] [PubMed]

M. Bernier, R. Valle, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, “Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400nm femtosecond pulses and a phase-mask,” Opt. Express 17, 18887–18893 (2009).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13, 5377–5385 (2005).
[CrossRef] [PubMed]

Opt. Lett. (6)

N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32, 2804–2806 (2007).
[CrossRef] [PubMed]

N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Stable high-power continuouswave Yb3+-doped silica fiber laser utilizing a point-by-pointinscribed fiber Bragg grating,” Opt. Lett. 32, 1486–1488 (2007).
[CrossRef] [PubMed]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29, 1730–1732 (2004).
[CrossRef] [PubMed]

E. Wikszak, J. Thomas, S. Klingebiel, B. Ortac¸, J. Limpert, S. Nolte, and A. Tüunermann, “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett. 32, 2756–2758 (2007).
[CrossRef] [PubMed]

C. G. Askins, T.-E. Tsai, G. M. Williams, M. A. Putnam, M. Bashkansky, and E. J. Friebele, “Fiber Bragg reflectors prepared by a single excimer pulse,” Opt. Lett. 17, 833–835 (1992).
[CrossRef] [PubMed]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. Lenzner, J. Krger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998).
[CrossRef]

Other (2)

A. Othonos, and K. Kalli, Fiber Bragg gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

R. Kashyap, Fiber Bragg Gratings (Academic, 1999), 411–415.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

a) Measured transmission and reflection spectra of FBG1 written in double-clad fiber at 620 μJ, 1 kHz, during 10 s. b) Variation of the FWHM and Reflectivity of FBG1 in the process of short term annealing.

Fig. 2
Fig. 2

FBG1’s reflection spectrum after thermal annealing at up to 950°C.

Fig. 3
Fig. 3

Variation of the FWHM through three consecutive long term annealing at 300°C, 450°C and 700°C, respectively.

Fig. 4
Fig. 4

Reflection spectra at the end of three consecutive long term annealing, A–before annealing, B–300°C, C–450°C, D–700°C, E–after cooling down.

Fig. 5
Fig. 5

a) The assumed evolution of the profile of the refractive index modulation. b) The narrowing of the transmission spectrum with the transmissivity unchanged at the central Bragg wavelength.

Fig. 6
Fig. 6

a) Measured transmission and reflection spectra of FBG3 written in double-clad fiber at 700 μJ, 1 kHz, during ∼2 s. b) Variation of the FWHM and Reflectivity of FBG3 in the process of short term annealing.

Fig. 7
Fig. 7

Measured Reflection spectra of FBG3 before and after thermal annealing at up to 520°C.

Fig. 8
Fig. 8

a) Measured transmission and reflection spectra of FBG4 written in double-clad fiber at 500 μJ, 1 kHz, during ∼2 minutes. b) Variation of the FWHM and Reflectivity of FBG4 in the process of short term annealing.

Metrics