Abstract

The nonlinear dependence between the duty-cycle of semiconductor nanorod array and its surface reflectance minimization is demonstrated. The duty-cycle control on thin-SiO2 covered Si nanorod array is performed by O2- plasma pre-etching the self-assembled polystyrene nanosphere array mask with area density of 4 × 108 rod/cm−2. The 120-nm high SiO2 covered Si nanorod array is obtained after subsequent CF4/O2 plasma etching for 160 sec. This results in a tunable nanorod diameter from 445 to 285 nm after etching from 30 to 80 sec, corresponding to a varying nanorod duty-cycle from 89% to 57%. The TM-mode reflection analysis shows a diminishing Brewster angle shifted from 71° to 54° with increasing nanorod duty-cycle from 57% to 89% at 532 nm. The greatly reduced small-angle reflectance reveals a nonlinear trend with enlarging duty-cycle, leading to a minimum surface reflectance at nanorod duty-cycle of 85%. Both the simulation and experiment indicate that such a surface reflectance minimum is even lower than that of a uniformly SiO2 covered Si substrate on account of its periodical nanorod array architecture with tuned duty-cycle.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G.-R. Lin, Y. H. Pai, and C. T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol. 26(11), 1486–1491 (2008).
    [CrossRef]
  2. F.-G. Tarntair, L.-C. Chen, S.-L. Wei, W.-K. Hong, K.-H. Chen, and H.-C. Cheng, “High current density field emission from arrays of carbon nanotubes and diamond-clad Si tips,” J. Vac. Sci. Technol. 18(3), 1207–1211 (2000).
    [CrossRef]
  3. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
    [CrossRef] [PubMed]
  4. J. Xiang, W. Lu, Y.-J. Hu, Y. Wu, H. Yan, and C.-M. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature 441(7092), 489–493 (2006).
    [CrossRef] [PubMed]
  5. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
    [CrossRef]
  6. Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photon. Technol. Lett. 14(8), 1064–1066 (2002).
    [CrossRef]
  7. S.-A. Boden and D.-M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
    [CrossRef]
  8. C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19(20), 205301 (2008).
    [CrossRef] [PubMed]
  9. N. J. Trujillo, S. Baxamusa, and K. K. Gleason, “Grafted polymeric nanostructures patterned bottom-up by colloidal lithography and initiated chemical vapor deposition (iCVD),” Thin Solid Films 517(12), 3615–3618 (2009).
    [CrossRef]
  10. H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
    [CrossRef] [PubMed]
  11. P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. V. Prakash, and L. Pavesi, “Silicon nanostructures for photonics,” J. Phys. Condens. Matter 14(35), 8253–8281 (2002).
    [CrossRef]
  12. W. Liu, W. Zhong, L. J. Qiu, L. Y. Lu, and Y. W. Du, “Fabrication and magnetic behaviour of 2D ordered Fe/SiO2 nanodots array,” Eur. Phys. J. B 51(4), 501–506 (2006).
    [CrossRef]
  13. P. Jiang and M. J. McFarland, “Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating,” J. Am. Chem. Soc. 126(42), 13778–13786 (2004).
    [CrossRef] [PubMed]
  14. C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
    [CrossRef]
  15. M. Elwenspoek, and H. Jansen, “Silicon Micromachining”, Cambridge University Press: Cambridge, U.K. (1998).
  16. L. Yan, K. Wang, J. Wu, and L. Ye, “Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching,” J. Phys. Chem. B 110(23), 11241–11246 (2006).
    [CrossRef] [PubMed]
  17. B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
    [CrossRef]
  18. A. Ruiz, A. Valsesia, G. Ceccone, D. Gilliland, P. Colpo, and F. Rossi, “Fabrication and characterization of plasma processed surfaces with tuned wettability,” Langmuir 23(26), 12984–12989 (2007).
    [CrossRef] [PubMed]
  19. K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides, and C. Cardinaud, “Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces,” Langmuir 25(19), 11748–11759 (2009).
    [CrossRef] [PubMed]
  20. J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  21. T. Homma, A. Satoh, S. Okada, M. Itoh, M. Yamaguchi, and H. Takahashi, “Optical properties of fluorinated silicon oxide films by liquid phase deposition for optical waveguides,” IEEE Trans. Instrum. Meas. 47(3), 698–702 (1998).
    [CrossRef]
  22. G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009).
    [CrossRef] [PubMed]

2009 (4)

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
[CrossRef] [PubMed]

N. J. Trujillo, S. Baxamusa, and K. K. Gleason, “Grafted polymeric nanostructures patterned bottom-up by colloidal lithography and initiated chemical vapor deposition (iCVD),” Thin Solid Films 517(12), 3615–3618 (2009).
[CrossRef]

K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides, and C. Cardinaud, “Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces,” Langmuir 25(19), 11748–11759 (2009).
[CrossRef] [PubMed]

G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009).
[CrossRef] [PubMed]

2008 (4)

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[CrossRef]

S.-A. Boden and D.-M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19(20), 205301 (2008).
[CrossRef] [PubMed]

G.-R. Lin, Y. H. Pai, and C. T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol. 26(11), 1486–1491 (2008).
[CrossRef]

2007 (3)

H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
[CrossRef] [PubMed]

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

A. Ruiz, A. Valsesia, G. Ceccone, D. Gilliland, P. Colpo, and F. Rossi, “Fabrication and characterization of plasma processed surfaces with tuned wettability,” Langmuir 23(26), 12984–12989 (2007).
[CrossRef] [PubMed]

2006 (3)

L. Yan, K. Wang, J. Wu, and L. Ye, “Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching,” J. Phys. Chem. B 110(23), 11241–11246 (2006).
[CrossRef] [PubMed]

W. Liu, W. Zhong, L. J. Qiu, L. Y. Lu, and Y. W. Du, “Fabrication and magnetic behaviour of 2D ordered Fe/SiO2 nanodots array,” Eur. Phys. J. B 51(4), 501–506 (2006).
[CrossRef]

J. Xiang, W. Lu, Y.-J. Hu, Y. Wu, H. Yan, and C.-M. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature 441(7092), 489–493 (2006).
[CrossRef] [PubMed]

2004 (2)

P. Jiang and M. J. McFarland, “Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating,” J. Am. Chem. Soc. 126(42), 13778–13786 (2004).
[CrossRef] [PubMed]

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[CrossRef]

2002 (2)

Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photon. Technol. Lett. 14(8), 1064–1066 (2002).
[CrossRef]

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. V. Prakash, and L. Pavesi, “Silicon nanostructures for photonics,” J. Phys. Condens. Matter 14(35), 8253–8281 (2002).
[CrossRef]

2000 (1)

F.-G. Tarntair, L.-C. Chen, S.-L. Wei, W.-K. Hong, K.-H. Chen, and H.-C. Cheng, “High current density field emission from arrays of carbon nanotubes and diamond-clad Si tips,” J. Vac. Sci. Technol. 18(3), 1207–1211 (2000).
[CrossRef]

1999 (1)

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
[CrossRef]

1998 (1)

T. Homma, A. Satoh, S. Okada, M. Itoh, M. Yamaguchi, and H. Takahashi, “Optical properties of fluorinated silicon oxide films by liquid phase deposition for optical waveguides,” IEEE Trans. Instrum. Meas. 47(3), 698–702 (1998).
[CrossRef]

Bagnall, D.-M.

S.-A. Boden and D.-M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

Baxamusa, S.

N. J. Trujillo, S. Baxamusa, and K. K. Gleason, “Grafted polymeric nanostructures patterned bottom-up by colloidal lithography and initiated chemical vapor deposition (iCVD),” Thin Solid Films 517(12), 3615–3618 (2009).
[CrossRef]

Bettotti, P.

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. V. Prakash, and L. Pavesi, “Silicon nanostructures for photonics,” J. Phys. Condens. Matter 14(35), 8253–8281 (2002).
[CrossRef]

Boden, S.-A.

S.-A. Boden and D.-M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

Cardinaud, C.

K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides, and C. Cardinaud, “Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces,” Langmuir 25(19), 11748–11759 (2009).
[CrossRef] [PubMed]

Cazzanelli, M.

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. V. Prakash, and L. Pavesi, “Silicon nanostructures for photonics,” J. Phys. Condens. Matter 14(35), 8253–8281 (2002).
[CrossRef]

Ceccone, G.

A. Ruiz, A. Valsesia, G. Ceccone, D. Gilliland, P. Colpo, and F. Rossi, “Fabrication and characterization of plasma processed surfaces with tuned wettability,” Langmuir 23(26), 12984–12989 (2007).
[CrossRef] [PubMed]

Chang, Y. C.

G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009).
[CrossRef] [PubMed]

Chen, H. L.

H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
[CrossRef] [PubMed]

Chen, K.-H.

F.-G. Tarntair, L.-C. Chen, S.-L. Wei, W.-K. Hong, K.-H. Chen, and H.-C. Cheng, “High current density field emission from arrays of carbon nanotubes and diamond-clad Si tips,” J. Vac. Sci. Technol. 18(3), 1207–1211 (2000).
[CrossRef]

Chen, L.-C.

F.-G. Tarntair, L.-C. Chen, S.-L. Wei, W.-K. Hong, K.-H. Chen, and H.-C. Cheng, “High current density field emission from arrays of carbon nanotubes and diamond-clad Si tips,” J. Vac. Sci. Technol. 18(3), 1207–1211 (2000).
[CrossRef]

Chen, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Cheng, H.-C.

F.-G. Tarntair, L.-C. Chen, S.-L. Wei, W.-K. Hong, K.-H. Chen, and H.-C. Cheng, “High current density field emission from arrays of carbon nanotubes and diamond-clad Si tips,” J. Vac. Sci. Technol. 18(3), 1207–1211 (2000).
[CrossRef]

Cheong, F.-C.

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[CrossRef]

Chong, G.-L.

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[CrossRef]

Chou, C.-P.

C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19(20), 205301 (2008).
[CrossRef] [PubMed]

Chuang, S. Y.

H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
[CrossRef] [PubMed]

Colpo, P.

A. Ruiz, A. Valsesia, G. Ceccone, D. Gilliland, P. Colpo, and F. Rossi, “Fabrication and characterization of plasma processed surfaces with tuned wettability,” Langmuir 23(26), 12984–12989 (2007).
[CrossRef] [PubMed]

Connor, S. T.

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[CrossRef]

Cui, Y.

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[CrossRef]

Dal Negro, L.

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. V. Prakash, and L. Pavesi, “Silicon nanostructures for photonics,” J. Phys. Condens. Matter 14(35), 8253–8281 (2002).
[CrossRef]

Danese, B.

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. V. Prakash, and L. Pavesi, “Silicon nanostructures for photonics,” J. Phys. Condens. Matter 14(35), 8253–8281 (2002).
[CrossRef]

Du, Y. W.

W. Liu, W. Zhong, L. J. Qiu, L. Y. Lu, and Y. W. Du, “Fabrication and magnetic behaviour of 2D ordered Fe/SiO2 nanodots array,” Eur. Phys. J. B 51(4), 501–506 (2006).
[CrossRef]

Fu, C.-C.

C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19(20), 205301 (2008).
[CrossRef] [PubMed]

Gaburro, Z.

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. V. Prakash, and L. Pavesi, “Silicon nanostructures for photonics,” J. Phys. Condens. Matter 14(35), 8253–8281 (2002).
[CrossRef]

Gilliland, D.

A. Ruiz, A. Valsesia, G. Ceccone, D. Gilliland, P. Colpo, and F. Rossi, “Fabrication and characterization of plasma processed surfaces with tuned wettability,” Langmuir 23(26), 12984–12989 (2007).
[CrossRef] [PubMed]

Gleason, K. K.

N. J. Trujillo, S. Baxamusa, and K. K. Gleason, “Grafted polymeric nanostructures patterned bottom-up by colloidal lithography and initiated chemical vapor deposition (iCVD),” Thin Solid Films 517(12), 3615–3618 (2009).
[CrossRef]

Gogolides, E.

K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides, and C. Cardinaud, “Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces,” Langmuir 25(19), 11748–11759 (2009).
[CrossRef] [PubMed]

Hane, K.

Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photon. Technol. Lett. 14(8), 1064–1066 (2002).
[CrossRef]

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
[CrossRef]

Homma, T.

T. Homma, A. Satoh, S. Okada, M. Itoh, M. Yamaguchi, and H. Takahashi, “Optical properties of fluorinated silicon oxide films by liquid phase deposition for optical waveguides,” IEEE Trans. Instrum. Meas. 47(3), 698–702 (1998).
[CrossRef]

Hong, W.-K.

F.-G. Tarntair, L.-C. Chen, S.-L. Wei, W.-K. Hong, K.-H. Chen, and H.-C. Cheng, “High current density field emission from arrays of carbon nanotubes and diamond-clad Si tips,” J. Vac. Sci. Technol. 18(3), 1207–1211 (2000).
[CrossRef]

Hsu, C. M.

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[CrossRef]

Hsu, S. H.

G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009).
[CrossRef] [PubMed]

Hu, Y.-J.

J. Xiang, W. Lu, Y.-J. Hu, Y. Wu, H. Yan, and C.-M. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature 441(7092), 489–493 (2006).
[CrossRef] [PubMed]

Huang, M.-C.

C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19(20), 205301 (2008).
[CrossRef] [PubMed]

Ishimori, M.

Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photon. Technol. Lett. 14(8), 1064–1066 (2002).
[CrossRef]

Itoh, M.

T. Homma, A. Satoh, S. Okada, M. Itoh, M. Yamaguchi, and H. Takahashi, “Optical properties of fluorinated silicon oxide films by liquid phase deposition for optical waveguides,” IEEE Trans. Instrum. Meas. 47(3), 698–702 (1998).
[CrossRef]

Jiang, P.

P. Jiang and M. J. McFarland, “Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating,” J. Am. Chem. Soc. 126(42), 13778–13786 (2004).
[CrossRef] [PubMed]

Kanamori, Y.

Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photon. Technol. Lett. 14(8), 1064–1066 (2002).
[CrossRef]

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
[CrossRef]

Kim, J. K.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Lieber, C.-M.

J. Xiang, W. Lu, Y.-J. Hu, Y. Wu, H. Yan, and C.-M. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature 441(7092), 489–493 (2006).
[CrossRef] [PubMed]

Lim, K.-Y.

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[CrossRef]

Lin, C.

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
[CrossRef] [PubMed]

Lin, C. H.

H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
[CrossRef] [PubMed]

Lin, C. T.

G.-R. Lin, Y. H. Pai, and C. T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol. 26(11), 1486–1491 (2008).
[CrossRef]

Lin, G.-R.

G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009).
[CrossRef] [PubMed]

G.-R. Lin, Y. H. Pai, and C. T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol. 26(11), 1486–1491 (2008).
[CrossRef]

Lin, S. Y.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Lin, Y. H.

H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
[CrossRef] [PubMed]

Liu, W.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

W. Liu, W. Zhong, L. J. Qiu, L. Y. Lu, and Y. W. Du, “Fabrication and magnetic behaviour of 2D ordered Fe/SiO2 nanodots array,” Eur. Phys. J. B 51(4), 501–506 (2006).
[CrossRef]

Lu, L. Y.

W. Liu, W. Zhong, L. J. Qiu, L. Y. Lu, and Y. W. Du, “Fabrication and magnetic behaviour of 2D ordered Fe/SiO2 nanodots array,” Eur. Phys. J. B 51(4), 501–506 (2006).
[CrossRef]

Lu, W.

J. Xiang, W. Lu, Y.-J. Hu, Y. Wu, H. Yan, and C.-M. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature 441(7092), 489–493 (2006).
[CrossRef] [PubMed]

McFarland, M. J.

P. Jiang and M. J. McFarland, “Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating,” J. Am. Chem. Soc. 126(42), 13778–13786 (2004).
[CrossRef] [PubMed]

Meng, F. S.

G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009).
[CrossRef] [PubMed]

Okada, S.

T. Homma, A. Satoh, S. Okada, M. Itoh, M. Yamaguchi, and H. Takahashi, “Optical properties of fluorinated silicon oxide films by liquid phase deposition for optical waveguides,” IEEE Trans. Instrum. Meas. 47(3), 698–702 (1998).
[CrossRef]

Ong, C.-K.

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[CrossRef]

Oton, C. J.

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. V. Prakash, and L. Pavesi, “Silicon nanostructures for photonics,” J. Phys. Condens. Matter 14(35), 8253–8281 (2002).
[CrossRef]

Pai, Y. H.

G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009).
[CrossRef] [PubMed]

G.-R. Lin, Y. H. Pai, and C. T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol. 26(11), 1486–1491 (2008).
[CrossRef]

Pavesi, L.

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. V. Prakash, and L. Pavesi, “Silicon nanostructures for photonics,” J. Phys. Condens. Matter 14(35), 8253–8281 (2002).
[CrossRef]

Povinelli, M. L.

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
[CrossRef] [PubMed]

Prakash, G. V.

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. V. Prakash, and L. Pavesi, “Silicon nanostructures for photonics,” J. Phys. Condens. Matter 14(35), 8253–8281 (2002).
[CrossRef]

Qiu, L. J.

W. Liu, W. Zhong, L. J. Qiu, L. Y. Lu, and Y. W. Du, “Fabrication and magnetic behaviour of 2D ordered Fe/SiO2 nanodots array,” Eur. Phys. J. B 51(4), 501–506 (2006).
[CrossRef]

Rossi, F.

A. Ruiz, A. Valsesia, G. Ceccone, D. Gilliland, P. Colpo, and F. Rossi, “Fabrication and characterization of plasma processed surfaces with tuned wettability,” Langmuir 23(26), 12984–12989 (2007).
[CrossRef] [PubMed]

Ruiz, A.

A. Ruiz, A. Valsesia, G. Ceccone, D. Gilliland, P. Colpo, and F. Rossi, “Fabrication and characterization of plasma processed surfaces with tuned wettability,” Langmuir 23(26), 12984–12989 (2007).
[CrossRef] [PubMed]

Sasaki, M.

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
[CrossRef]

Satoh, A.

T. Homma, A. Satoh, S. Okada, M. Itoh, M. Yamaguchi, and H. Takahashi, “Optical properties of fluorinated silicon oxide films by liquid phase deposition for optical waveguides,” IEEE Trans. Instrum. Meas. 47(3), 698–702 (1998).
[CrossRef]

Schubert, E. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Schubert, M. F.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Smart, J. A.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Sow, C.-H.

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[CrossRef]

Takahashi, H.

T. Homma, A. Satoh, S. Okada, M. Itoh, M. Yamaguchi, and H. Takahashi, “Optical properties of fluorinated silicon oxide films by liquid phase deposition for optical waveguides,” IEEE Trans. Instrum. Meas. 47(3), 698–702 (1998).
[CrossRef]

Tan, B. J.-Y.

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[CrossRef]

Tang, M. X.

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[CrossRef]

Tarntair, F.-G.

F.-G. Tarntair, L.-C. Chen, S.-L. Wei, W.-K. Hong, K.-H. Chen, and H.-C. Cheng, “High current density field emission from arrays of carbon nanotubes and diamond-clad Si tips,” J. Vac. Sci. Technol. 18(3), 1207–1211 (2000).
[CrossRef]

Ting, C.-J.

C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19(20), 205301 (2008).
[CrossRef] [PubMed]

Trujillo, N. J.

N. J. Trujillo, S. Baxamusa, and K. K. Gleason, “Grafted polymeric nanostructures patterned bottom-up by colloidal lithography and initiated chemical vapor deposition (iCVD),” Thin Solid Films 517(12), 3615–3618 (2009).
[CrossRef]

Tsai, H.-Y.

C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19(20), 205301 (2008).
[CrossRef] [PubMed]

Tserepi, A.

K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides, and C. Cardinaud, “Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces,” Langmuir 25(19), 11748–11759 (2009).
[CrossRef] [PubMed]

Tsougeni, K.

K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides, and C. Cardinaud, “Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces,” Langmuir 25(19), 11748–11759 (2009).
[CrossRef] [PubMed]

Valsesia, A.

A. Ruiz, A. Valsesia, G. Ceccone, D. Gilliland, P. Colpo, and F. Rossi, “Fabrication and characterization of plasma processed surfaces with tuned wettability,” Langmuir 23(26), 12984–12989 (2007).
[CrossRef] [PubMed]

Vourdas, N.

K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides, and C. Cardinaud, “Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces,” Langmuir 25(19), 11748–11759 (2009).
[CrossRef] [PubMed]

Wang, K.

L. Yan, K. Wang, J. Wu, and L. Ye, “Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching,” J. Phys. Chem. B 110(23), 11241–11246 (2006).
[CrossRef] [PubMed]

Wee, A. T.-S.

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[CrossRef]

Wei, S.-L.

F.-G. Tarntair, L.-C. Chen, S.-L. Wei, W.-K. Hong, K.-H. Chen, and H.-C. Cheng, “High current density field emission from arrays of carbon nanotubes and diamond-clad Si tips,” J. Vac. Sci. Technol. 18(3), 1207–1211 (2000).
[CrossRef]

Wu, J.

L. Yan, K. Wang, J. Wu, and L. Ye, “Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching,” J. Phys. Chem. B 110(23), 11241–11246 (2006).
[CrossRef] [PubMed]

Wu, Y.

J. Xiang, W. Lu, Y.-J. Hu, Y. Wu, H. Yan, and C.-M. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature 441(7092), 489–493 (2006).
[CrossRef] [PubMed]

Xi, J.-Q.

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Xiang, J.

J. Xiang, W. Lu, Y.-J. Hu, Y. Wu, H. Yan, and C.-M. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature 441(7092), 489–493 (2006).
[CrossRef] [PubMed]

Yamaguchi, M.

T. Homma, A. Satoh, S. Okada, M. Itoh, M. Yamaguchi, and H. Takahashi, “Optical properties of fluorinated silicon oxide films by liquid phase deposition for optical waveguides,” IEEE Trans. Instrum. Meas. 47(3), 698–702 (1998).
[CrossRef]

Yan, H.

J. Xiang, W. Lu, Y.-J. Hu, Y. Wu, H. Yan, and C.-M. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature 441(7092), 489–493 (2006).
[CrossRef] [PubMed]

Yan, L.

L. Yan, K. Wang, J. Wu, and L. Ye, “Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching,” J. Phys. Chem. B 110(23), 11241–11246 (2006).
[CrossRef] [PubMed]

Ye, L.

L. Yan, K. Wang, J. Wu, and L. Ye, “Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching,” J. Phys. Chem. B 110(23), 11241–11246 (2006).
[CrossRef] [PubMed]

Zhong, W.

W. Liu, W. Zhong, L. J. Qiu, L. Y. Lu, and Y. W. Du, “Fabrication and magnetic behaviour of 2D ordered Fe/SiO2 nanodots array,” Eur. Phys. J. B 51(4), 501–506 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

S.-A. Boden and D.-M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008).
[CrossRef]

Eur. Phys. J. B (1)

W. Liu, W. Zhong, L. J. Qiu, L. Y. Lu, and Y. W. Du, “Fabrication and magnetic behaviour of 2D ordered Fe/SiO2 nanodots array,” Eur. Phys. J. B 51(4), 501–506 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photon. Technol. Lett. 14(8), 1064–1066 (2002).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

T. Homma, A. Satoh, S. Okada, M. Itoh, M. Yamaguchi, and H. Takahashi, “Optical properties of fluorinated silicon oxide films by liquid phase deposition for optical waveguides,” IEEE Trans. Instrum. Meas. 47(3), 698–702 (1998).
[CrossRef]

J. Am. Chem. Soc. (1)

P. Jiang and M. J. McFarland, “Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating,” J. Am. Chem. Soc. 126(42), 13778–13786 (2004).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

G.-R. Lin, Y. H. Pai, and C. T. Lin, “Microwatt MOSLED using SiOx with buried Si nanocrystals on Si nano-pillar array,” J. Lightwave Technol. 26(11), 1486–1491 (2008).
[CrossRef]

J. Phys. Chem. B (2)

L. Yan, K. Wang, J. Wu, and L. Ye, “Hydrophobicity of model surfaces with loosely packed polystyrene spheres after plasma etching,” J. Phys. Chem. B 110(23), 11241–11246 (2006).
[CrossRef] [PubMed]

B. J.-Y. Tan, C.-H. Sow, K.-Y. Lim, F.-C. Cheong, G.-L. Chong, A. T.-S. Wee, and C.-K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles,” J. Phys. Chem. B 108(48), 18575–18579 (2004).
[CrossRef]

J. Phys. Condens. Matter (1)

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. V. Prakash, and L. Pavesi, “Silicon nanostructures for photonics,” J. Phys. Condens. Matter 14(35), 8253–8281 (2002).
[CrossRef]

J. Vac. Sci. Technol. (1)

F.-G. Tarntair, L.-C. Chen, S.-L. Wei, W.-K. Hong, K.-H. Chen, and H.-C. Cheng, “High current density field emission from arrays of carbon nanotubes and diamond-clad Si tips,” J. Vac. Sci. Technol. 18(3), 1207–1211 (2000).
[CrossRef]

Langmuir (2)

A. Ruiz, A. Valsesia, G. Ceccone, D. Gilliland, P. Colpo, and F. Rossi, “Fabrication and characterization of plasma processed surfaces with tuned wettability,” Langmuir 23(26), 12984–12989 (2007).
[CrossRef] [PubMed]

K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides, and C. Cardinaud, “Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces,” Langmuir 25(19), 11748–11759 (2009).
[CrossRef] [PubMed]

Nanotechnology (1)

C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, “Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology,” Nanotechnology 19(20), 205301 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).

Nature (1)

J. Xiang, W. Lu, Y.-J. Hu, Y. Wu, H. Yan, and C.-M. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature 441(7092), 489–493 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
[CrossRef] [PubMed]

H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
[CrossRef] [PubMed]

G.-R. Lin, F. S. Meng, Y. H. Pai, Y. C. Chang, and S. H. Hsu, “Manipulative depolarization and reflectance spectra of morphologically controlled nano-pillars and nano-rods,” Opt. Express 17(23), 20824–20832 (2009).
[CrossRef] [PubMed]

Opt. Lett. (1)

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999).
[CrossRef]

Thin Solid Films (1)

N. J. Trujillo, S. Baxamusa, and K. K. Gleason, “Grafted polymeric nanostructures patterned bottom-up by colloidal lithography and initiated chemical vapor deposition (iCVD),” Thin Solid Films 517(12), 3615–3618 (2009).
[CrossRef]

Other (1)

M. Elwenspoek, and H. Jansen, “Silicon Micromachining”, Cambridge University Press: Cambridge, U.K. (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of SiO2 covered Si nanorod array fabrication.

Fig. 2
Fig. 2

The size of nanosphere and distance between the nanorods as a function of etching time.

Fig. 3
Fig. 3

(a), (b), and (c) the FE-SEM image of SiO2/Si nanorod arrays with duty-cycle of 85%, 73%, and 57%, respectively; (d) A cross-sectional TEM micrograph of SiO2/Si nanorod; (e) Depth profile mapping of SiO2/Si nanorod measured by electron-beam scanning.

Fig. 4
Fig. 4

(a) Incident angle dependent reflectance spectra of nanorod arrays with duty-cycle of 89%, 73%, 57%, and Si substrate measured under the TM polarized incident light at 532 nm; Inset: The Brewster angle as a function of the duty-cycle. Note that the scattered data points are the measured data points and the curve is the fitting curve. (b) Surface reflectance of nanorod arrays with duty-cycle of 89%, 73%, 57%, and Si substrate measured at incident angle of 35 degree.

Fig. 5
Fig. 5

Experimental and simulated refractive indices of nanorod arrays as a function of duty-cycle.

Fig. 6
Fig. 6

Simulation results of nanorod array with (a) different mixed structure and (b) different duty-cycle in linear scale by Rsoft Diffraction Mode.

Fig. 7
Fig. 7

Experimental and simulated reflectance of nanorod arrays as a function of duty-cycle of 60% (left) and 89% (right).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n e f f = [ ( n r o d 2 ) ( π 4 S 2 P 2 ) 2 + ( n s u b s t r a t e 2 ) ( 1 π 4 S 2 P 2 ) 2 ] ,

Metrics