Abstract

Multilayered thin-film doped silica structures are experimentally demonstrated as an effective tool to enhance the second-order nonlinear properties induced in thermally poled glass devices. A 204-fold improvement is obtained in the second harmonic generated (SHG) in a poled structure with a 3 μm-thick multilayered stack consisting of sub- 100 nm-thick alternating germanium-doped and undoped silica layers compared to poled bulk silica glass. The induced nonlinearity is localized within the layered region, indicating that the multilayered design can be used to precisely control the thickness and the location of the nonlinearity. Such artificial nonlinear structures can be used to overcome the main limitations of existing poled glass devices, therefore opening the door to practical implementations of efficient active devices in silica glass.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326(5956), 1074–1077 (2009).
    [CrossRef] [PubMed]
  2. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
    [CrossRef]
  3. D. Cyranoski, “Materials science: China’s crystal cache,” Nature 457(7232), 953–955 (2009).
    [CrossRef] [PubMed]
  4. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
    [CrossRef] [PubMed]
  5. A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in a silica channel waveguide,” Opt. Lett. 19(7), 466–468 (1994).
    [CrossRef] [PubMed]
  6. Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65(4), 043816 (2002).
    [CrossRef]
  7. B.-J. Seo, S. Kim, B. Bortnik, H. Fetterman, D. Jin, and R. Dinu, “Optical signal processor using electro-optic polymer waveguides,” J. Lightwave Technol. 27(15), 3092–3106 (2009).
    [CrossRef]
  8. J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9(8), 289 (2007).
    [CrossRef]
  9. A. Canagasabey, C. Corbari, A. V. Gladyshev, F. Liegeois, S. Guillemet, Y. Hernandez, M. V. Yashkov, A. Kosolapov, E. M. Dianov, M. Ibsen, and P. G. Kazansky, “High-average-power second-harmonic generation from periodically poled silica fibers,” Opt. Lett. 34(16), 2483–2485 (2009).
    [CrossRef] [PubMed]
  10. P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68(2), 269–271 (1996).
    [CrossRef]
  11. T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
    [CrossRef]
  12. M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
    [CrossRef]
  13. Q. Liu, B. Poumellec, D. Braga, G. Blaise, Y. Ren, and M. Kristensen, “The change of electric field and of some other insulating properties during isochronal annealing in thermally poled Ge-doped silica films,” Appl. Phys. Lett. 87(12), 121906 (2005).
    [CrossRef]
  14. A. Kudlinski, Y. Quiquempois, and G. Martinelli, “Modeling of the χ(2) susceptibility time-evolution in thermally poled fused silica,” Opt. Express 13(20), 8015–8024 (2005).
    [CrossRef] [PubMed]
  15. A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Dynamics of the second-order nonlinearity induced in Suprasil glass thermally poled with continuous and alternating fields,” J. Appl. Phys. 103(6), 063109 (2008).
    [CrossRef]
  16. Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett. 84(24), 4935–4937 (2004).
    [CrossRef]
  17. M. Fokine, M. Ferraris, and I. C. Carvalho, “Thermal poling of glass: a nonlinear ionic RC circuit,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JWBPDP6.
  18. W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B 59(4), 2932–2946 (1999).
    [CrossRef]
  19. A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Advances in the measurement of the poled silica nonlinear profile,” Proc. SPIE 3542, 115–119 (1998) (Doped Fiber Devices).
    [CrossRef]
  20. D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: a review and synthesis,” J. Non-Cryst. Solids 357(8-9), 1945–1962 (2011).
    [CrossRef]
  21. H. An and S. Fleming, “Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers,” Appl. Phys. Lett. 87(10), 101108 (2005).
    [CrossRef]
  22. A. Ozcan, M. Digonnet, G. Kino, F. Ay, and A. Aydinli, “Characterization of thermally poled germanosilicate thin films,” Opt. Express 12(20), 4698–4708 (2004).
    [CrossRef] [PubMed]
  23. A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, “GeO2-doped silica glasses: an ac conductivity study,” Solid State Ion. 154–155, 217–221 (2002).
    [CrossRef]
  24. F. C. Garcia, L. Vogelaar, and R. Kashyap, “Poling of a channel waveguide,” Opt. Express 11(23), 3041–3047 (2003).
    [CrossRef] [PubMed]
  25. K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous corona poling of multiple glass layers for enhanced effective second-order optical nonlinearities,” Appl. Phys. Lett. 99(3), 031109 (2011).
    [CrossRef]
  26. N. Myrén, H. Olsson, L. Norin, N. Sjodin, P. Helander, J. Svennebrink, and W. Margulis, “Wide wedge-shaped depletion region in thermally poled fiber with alloy electrodes,” Opt. Express 12(25), 6093–6099 (2004).
    [CrossRef] [PubMed]
  27. K. Lee, P. Hu, J. L. Blows, D. Thorncraft, and J. Baxter, “200-m optical fiber with an integrated electrode and its poling,” Opt. Lett. 29(18), 2124–2126 (2004).
    [CrossRef] [PubMed]

2011

D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: a review and synthesis,” J. Non-Cryst. Solids 357(8-9), 1945–1962 (2011).
[CrossRef]

K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous corona poling of multiple glass layers for enhanced effective second-order optical nonlinearities,” Appl. Phys. Lett. 99(3), 031109 (2011).
[CrossRef]

2010

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[CrossRef]

2009

2008

A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Dynamics of the second-order nonlinearity induced in Suprasil glass thermally poled with continuous and alternating fields,” J. Appl. Phys. 103(6), 063109 (2008).
[CrossRef]

2007

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9(8), 289 (2007).
[CrossRef]

2005

Q. Liu, B. Poumellec, D. Braga, G. Blaise, Y. Ren, and M. Kristensen, “The change of electric field and of some other insulating properties during isochronal annealing in thermally poled Ge-doped silica films,” Appl. Phys. Lett. 87(12), 121906 (2005).
[CrossRef]

A. Kudlinski, Y. Quiquempois, and G. Martinelli, “Modeling of the χ(2) susceptibility time-evolution in thermally poled fused silica,” Opt. Express 13(20), 8015–8024 (2005).
[CrossRef] [PubMed]

H. An and S. Fleming, “Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers,” Appl. Phys. Lett. 87(10), 101108 (2005).
[CrossRef]

2004

2003

2002

A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, “GeO2-doped silica glasses: an ac conductivity study,” Solid State Ion. 154–155, 217–221 (2002).
[CrossRef]

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65(4), 043816 (2002).
[CrossRef]

1999

W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B 59(4), 2932–2946 (1999).
[CrossRef]

1998

A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Advances in the measurement of the poled silica nonlinear profile,” Proc. SPIE 3542, 115–119 (1998) (Doped Fiber Devices).
[CrossRef]

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[CrossRef]

1996

P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68(2), 269–271 (1996).
[CrossRef]

1994

1991

Albert, J.

K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous corona poling of multiple glass layers for enhanced effective second-order optical nonlinearities,” Appl. Phys. Lett. 99(3), 031109 (2011).
[CrossRef]

Alley, T. G.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[CrossRef]

An, H.

H. An and S. Fleming, “Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers,” Appl. Phys. Lett. 87(10), 101108 (2005).
[CrossRef]

Angerer, W. E.

W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B 59(4), 2932–2946 (1999).
[CrossRef]

Ay, F.

Aydinli, A.

Baxter, J.

Biswas, A.

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett. 84(24), 4935–4937 (2004).
[CrossRef]

Blaise, G.

Q. Liu, B. Poumellec, D. Braga, G. Blaise, Y. Ren, and M. Kristensen, “The change of electric field and of some other insulating properties during isochronal annealing in thermally poled Ge-doped silica films,” Appl. Phys. Lett. 87(12), 121906 (2005).
[CrossRef]

Blanchetiere, C.

K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous corona poling of multiple glass layers for enhanced effective second-order optical nonlinearities,” Appl. Phys. Lett. 99(3), 031109 (2011).
[CrossRef]

Blows, J. L.

Bortnik, B.

Boyd, R. W.

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326(5956), 1074–1077 (2009).
[CrossRef] [PubMed]

Braga, D.

Q. Liu, B. Poumellec, D. Braga, G. Blaise, Y. Ren, and M. Kristensen, “The change of electric field and of some other insulating properties during isochronal annealing in thermally poled Ge-doped silica films,” Appl. Phys. Lett. 87(12), 121906 (2005).
[CrossRef]

Brueck, S. R. J.

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett. 84(24), 4935–4937 (2004).
[CrossRef]

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[CrossRef] [PubMed]

Callender, C. L.

K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous corona poling of multiple glass layers for enhanced effective second-order optical nonlinearities,” Appl. Phys. Lett. 99(3), 031109 (2011).
[CrossRef]

Canagasabey, A.

Cardinal, T.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[CrossRef]

Chen, J.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9(8), 289 (2007).
[CrossRef]

Corbari, C.

Cutroni, M.

A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, “GeO2-doped silica glasses: an ac conductivity study,” Solid State Ion. 154–155, 217–221 (2002).
[CrossRef]

Cyranoski, D.

D. Cyranoski, “Materials science: China’s crystal cache,” Nature 457(7232), 953–955 (2009).
[CrossRef] [PubMed]

Dianov, E. M.

Digonnet, M.

Digonnet, M. J. F.

A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Advances in the measurement of the poled silica nonlinear profile,” Proc. SPIE 3542, 115–119 (1998) (Doped Fiber Devices).
[CrossRef]

A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in a silica channel waveguide,” Opt. Lett. 19(7), 466–468 (1994).
[CrossRef] [PubMed]

Dinu, R.

Dussauze, M.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[CrossRef]

Fargin, E.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[CrossRef]

Feltri, A.

A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, “GeO2-doped silica glasses: an ac conductivity study,” Solid State Ion. 154–155, 217–221 (2002).
[CrossRef]

Fetterman, H.

Fleming, S.

H. An and S. Fleming, “Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers,” Appl. Phys. Lett. 87(10), 101108 (2005).
[CrossRef]

Frauenglass, A.

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett. 84(24), 4935–4937 (2004).
[CrossRef]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[CrossRef]

Garcia, F. C.

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326(5956), 1074–1077 (2009).
[CrossRef] [PubMed]

Gladyshev, A. V.

Godbout, N.

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65(4), 043816 (2002).
[CrossRef]

Grandi, S.

A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, “GeO2-doped silica glasses: an ac conductivity study,” Solid State Ion. 154–155, 217–221 (2002).
[CrossRef]

Griscom, D. L.

D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: a review and synthesis,” J. Non-Cryst. Solids 357(8-9), 1945–1962 (2011).
[CrossRef]

Guillemet, S.

Helander, P.

Hernandez, Y.

Hu, P.

Ibsen, M.

Jacob, S.

K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous corona poling of multiple glass layers for enhanced effective second-order optical nonlinearities,” Appl. Phys. Lett. 99(3), 031109 (2011).
[CrossRef]

Jin, D.

Kamitsos, E. I.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[CrossRef]

Kashyap, R.

Kazansky, P. G.

A. Canagasabey, C. Corbari, A. V. Gladyshev, F. Liegeois, S. Guillemet, Y. Hernandez, M. V. Yashkov, A. Kosolapov, E. M. Dianov, M. Ibsen, and P. G. Kazansky, “High-average-power second-harmonic generation from periodically poled silica fibers,” Opt. Lett. 34(16), 2483–2485 (2009).
[CrossRef] [PubMed]

P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68(2), 269–271 (1996).
[CrossRef]

Khan, M. A.

W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B 59(4), 2932–2946 (1999).
[CrossRef]

Kim, S.

Kino, G.

Kino, G. S.

A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Advances in the measurement of the poled silica nonlinear profile,” Proc. SPIE 3542, 115–119 (1998) (Doped Fiber Devices).
[CrossRef]

A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in a silica channel waveguide,” Opt. Lett. 19(7), 466–468 (1994).
[CrossRef] [PubMed]

Knystautas, E. J.

A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Advances in the measurement of the poled silica nonlinear profile,” Proc. SPIE 3542, 115–119 (1998) (Doped Fiber Devices).
[CrossRef]

Kosolapov, A.

Kristensen, M.

Q. Liu, B. Poumellec, D. Braga, G. Blaise, Y. Ren, and M. Kristensen, “The change of electric field and of some other insulating properties during isochronal annealing in thermally poled Ge-doped silica films,” Appl. Phys. Lett. 87(12), 121906 (2005).
[CrossRef]

Kudlinski, A.

A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Dynamics of the second-order nonlinearity induced in Suprasil glass thermally poled with continuous and alternating fields,” J. Appl. Phys. 103(6), 063109 (2008).
[CrossRef]

A. Kudlinski, Y. Quiquempois, and G. Martinelli, “Modeling of the χ(2) susceptibility time-evolution in thermally poled fused silica,” Opt. Express 13(20), 8015–8024 (2005).
[CrossRef] [PubMed]

Kumar, P.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9(8), 289 (2007).
[CrossRef]

Lacroix, S.

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65(4), 043816 (2002).
[CrossRef]

Lee, K.

Lee, K. F.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9(8), 289 (2007).
[CrossRef]

Li, X.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9(8), 289 (2007).
[CrossRef]

Liegeois, F.

Lipovskii, A.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[CrossRef]

Liu, A. C.

A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Advances in the measurement of the poled silica nonlinear profile,” Proc. SPIE 3542, 115–119 (1998) (Doped Fiber Devices).
[CrossRef]

A. C. Liu, M. J. F. Digonnet, and G. S. Kino, “Electro-optic phase modulation in a silica channel waveguide,” Opt. Lett. 19(7), 466–468 (1994).
[CrossRef] [PubMed]

Liu, Q.

Q. Liu, B. Poumellec, D. Braga, G. Blaise, Y. Ren, and M. Kristensen, “The change of electric field and of some other insulating properties during isochronal annealing in thermally poled Ge-doped silica films,” Appl. Phys. Lett. 87(12), 121906 (2005).
[CrossRef]

Luo, Y.

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett. 84(24), 4935–4937 (2004).
[CrossRef]

Mandanici, A.

A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, “GeO2-doped silica glasses: an ac conductivity study,” Solid State Ion. 154–155, 217–221 (2002).
[CrossRef]

Margulis, W.

Martinelli, G.

A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Dynamics of the second-order nonlinearity induced in Suprasil glass thermally poled with continuous and alternating fields,” J. Appl. Phys. 103(6), 063109 (2008).
[CrossRef]

A. Kudlinski, Y. Quiquempois, and G. Martinelli, “Modeling of the χ(2) susceptibility time-evolution in thermally poled fused silica,” Opt. Express 13(20), 8015–8024 (2005).
[CrossRef] [PubMed]

Mukherjee, N.

Mustarelli, P.

A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, “GeO2-doped silica glasses: an ac conductivity study,” Solid State Ion. 154–155, 217–221 (2002).
[CrossRef]

Myers, R. A.

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[CrossRef]

R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991).
[CrossRef] [PubMed]

Myrén, N.

Norin, L.

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[CrossRef]

Olsson, H.

Ozcan, A.

Petrov, M.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[CrossRef]

Poumellec, B.

Q. Liu, B. Poumellec, D. Braga, G. Blaise, Y. Ren, and M. Kristensen, “The change of electric field and of some other insulating properties during isochronal annealing in thermally poled Ge-doped silica films,” Appl. Phys. Lett. 87(12), 121906 (2005).
[CrossRef]

Quiquempois, Y.

A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Dynamics of the second-order nonlinearity induced in Suprasil glass thermally poled with continuous and alternating fields,” J. Appl. Phys. 103(6), 063109 (2008).
[CrossRef]

A. Kudlinski, Y. Quiquempois, and G. Martinelli, “Modeling of the χ(2) susceptibility time-evolution in thermally poled fused silica,” Opt. Express 13(20), 8015–8024 (2005).
[CrossRef] [PubMed]

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65(4), 043816 (2002).
[CrossRef]

Ren, Y.

Q. Liu, B. Poumellec, D. Braga, G. Blaise, Y. Ren, and M. Kristensen, “The change of electric field and of some other insulating properties during isochronal annealing in thermally poled Ge-doped silica films,” Appl. Phys. Lett. 87(12), 121906 (2005).
[CrossRef]

Richardson, K.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[CrossRef]

Rodriguez, V.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[CrossRef]

Russell, P. St. J.

P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68(2), 269–271 (1996).
[CrossRef]

Seo, B.-J.

Sessler, G. M.

P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68(2), 269–271 (1996).
[CrossRef]

Sjodin, N.

Smelser, C. W.

K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous corona poling of multiple glass layers for enhanced effective second-order optical nonlinearities,” Appl. Phys. Lett. 99(3), 031109 (2011).
[CrossRef]

Smith, A. R.

P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68(2), 269–271 (1996).
[CrossRef]

Smith, C.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[CrossRef]

Sun, C. J.

W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B 59(4), 2932–2946 (1999).
[CrossRef]

Svennebrink, J.

Thorncraft, D.

Vogelaar, L.

Voss, P. L.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9(8), 289 (2007).
[CrossRef]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[CrossRef]

Yadav, K.

K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous corona poling of multiple glass layers for enhanced effective second-order optical nonlinearities,” Appl. Phys. Lett. 99(3), 031109 (2011).
[CrossRef]

Yang, G. M.

P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68(2), 269–271 (1996).
[CrossRef]

Yang, N.

W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B 59(4), 2932–2946 (1999).
[CrossRef]

Yashkov, M. V.

Yodh, A. G.

W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B 59(4), 2932–2946 (1999).
[CrossRef]

Appl. Phys. Lett.

P. G. Kazansky, A. R. Smith, P. St. J. Russell, G. M. Yang, and G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68(2), 269–271 (1996).
[CrossRef]

Q. Liu, B. Poumellec, D. Braga, G. Blaise, Y. Ren, and M. Kristensen, “The change of electric field and of some other insulating properties during isochronal annealing in thermally poled Ge-doped silica films,” Appl. Phys. Lett. 87(12), 121906 (2005).
[CrossRef]

Y. Luo, A. Biswas, A. Frauenglass, and S. R. J. Brueck, “Large second-harmonic signal in thermally poled lead glass-silica waveguides,” Appl. Phys. Lett. 84(24), 4935–4937 (2004).
[CrossRef]

H. An and S. Fleming, “Hindering effect of the core-cladding interface on the progression of the second-order nonlinearity layer in thermally poled optical fibers,” Appl. Phys. Lett. 87(10), 101108 (2005).
[CrossRef]

K. Yadav, C. W. Smelser, S. Jacob, C. Blanchetiere, C. L. Callender, and J. Albert, “Simultaneous corona poling of multiple glass layers for enhanced effective second-order optical nonlinearities,” Appl. Phys. Lett. 99(3), 031109 (2011).
[CrossRef]

J. Appl. Phys.

A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Dynamics of the second-order nonlinearity induced in Suprasil glass thermally poled with continuous and alternating fields,” J. Appl. Phys. 103(6), 063109 (2008).
[CrossRef]

J. Lightwave Technol.

J. Non-Cryst. Solids

T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242(2-3), 165–176 (1998).
[CrossRef]

D. L. Griscom, “Trapped-electron centers in pure and doped glassy silica: a review and synthesis,” J. Non-Cryst. Solids 357(8-9), 1945–1962 (2011).
[CrossRef]

J. Phys. Chem. C

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[CrossRef]

Nat. Photonics

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[CrossRef]

Nature

D. Cyranoski, “Materials science: China’s crystal cache,” Nature 457(7232), 953–955 (2009).
[CrossRef] [PubMed]

New J. Phys.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, “Schemes for fibre-based entanglement generation in the telecom band,” New J. Phys. 9(8), 289 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

Y. Quiquempois, N. Godbout, and S. Lacroix, “Model of charge migration during thermal poling in silica glasses: evidence of a voltage threshold for the onset of a second-order nonlinearity,” Phys. Rev. A 65(4), 043816 (2002).
[CrossRef]

Phys. Rev. B

W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B 59(4), 2932–2946 (1999).
[CrossRef]

Proc. SPIE

A. C. Liu, M. J. F. Digonnet, G. S. Kino, and E. J. Knystautas, “Advances in the measurement of the poled silica nonlinear profile,” Proc. SPIE 3542, 115–119 (1998) (Doped Fiber Devices).
[CrossRef]

Science

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326(5956), 1074–1077 (2009).
[CrossRef] [PubMed]

Solid State Ion.

A. Feltri, S. Grandi, P. Mustarelli, M. Cutroni, and A. Mandanici, “GeO2-doped silica glasses: an ac conductivity study,” Solid State Ion. 154–155, 217–221 (2002).
[CrossRef]

Other

M. Fokine, M. Ferraris, and I. C. Carvalho, “Thermal poling of glass: a nonlinear ionic RC circuit,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JWBPDP6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Charge migration model for the poling-induced second-order nonlinearity in glasses (assuming a non-blocking anode electrode).

Fig. 2
Fig. 2

Thermally poled silica-based samples studied in this work. (a) A bulk glass sample. (b) A four-layered stack of alternating undoped and germanium-doped layers. (c) A multilayered stack consisting of a large number of alternating undoped and germanium-doped nanolayers.

Fig. 3
Fig. 3

SHG in thermally poled bulk silica glass and our silica-based multilayered structures. A two-fold SHG enhancement is obtained in sample G compared to sample B, where the two samples were poled under identical conditions. A 204-fold enhancement is obtained in sample M, which consisted of a 3 μm-thick stack with a large number of sub-100 nm-thick nanolayers.

Fig. 4
Fig. 4

SHG in thermally poled multilayered structures with varying total stack thicknesses ranging from 1.5 to 5 μm (with the individual layer thicknesses remaining at 75 nm for all samples).

Fig. 5
Fig. 5

Remaining SHG in etched thermally poled multilayered structure. Over 95% of the SHG in sample M is concentrated in the 3 μm-thick multilayered stack.

Fig. 6
Fig. 6

A conceptual setup for the realization of an efficient second-order nonlinear fiber by thermal poling of a multilayered silica-based core.

Metrics