Abstract

A bidirectional fiber optical CATV transport system employing phase modulation (PM) scheme and frequency up-conversion technique to deal with downstream CATV signals, and using light injection-locked distributed feedback laser diode (DFB LD) as a duplex transceiver at the receiving site is proposed and experimentally demonstrated. With optimum injection wavelength and power level, a DFB LD is efficiently employed for both the transmitter and receiver operations. Such DFB LD is used to replace the functions of delay interferometer (DI) and CATV receiver, and also to be as the upstream light source. To the best of our knowledge, it is the first time to successfully utilize a DFB LD to detect the phase-modulated CATV signals. Impressive experimental results prove that our proposed systems not only can employ the PM scheme and the frequency up-conversion technique to optimize the overall performances of systems, but also can use an injection-locked DFB LD to detect the downstream phase-modulated CATV signals as well as to transmit the upstream CATV ones simultaneously.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Tzeng, H. H. Lu, C. Y. Li, K. H. Chang, and C. H. Lee, “CSO/CTB performance improvement by using Fabry-Perot etalon at the receiving site,” Prog. Electromagn Res Lett. 6(14), 107–113 (2009).
    [CrossRef]
  2. H. H. Lu, A. S. Patra, S. J. Tzeng, H. C. Peng, and W. I. Lin, “Improvement of fiber optical CATV transport systems performance based on lower-frequency side mode injection-locked technique,” IEEE Photon. Technol. Lett. 20(5), 351–353 (2008).
    [CrossRef]
  3. D. Piehler, X. Zou, C. Y. Kuo, A. Nilsson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55dB CNR over 50km of fiber in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33(3), 226–227 (1997).
    [CrossRef]
  4. H. Kim, S. B. Jun, and Y. C. Chung, “Raman crosstalk suppression in CATV overlay passive optical network,” IEEE Photon. Technol. Lett. 19 (9), 695–697 (2007).
    [CrossRef]
  5. P. Y. Wu, H. H. Lu, C. L. Ying, C. Y. Li, and H. S. Su, “An up-converted phase modulated fiber optical CATV transport system,” IEEE/OSA, J. Lightwave Technol. 29(16), 2422–2427 (2011).
    [CrossRef]
  6. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Optical beamforming networks employing phase modulation and direct detection,” Opt. Commun. 284(12), 2695–2699 (2011).
    [CrossRef]
  7. O. Lidoyne and P. Gallion, “Analysis of receiver using injection-locked semiconductor laser for direct demodulation of PSK optical signals,” Electron. Lett. 27(11), 995–997 (1991).
    [CrossRef]
  8. N. Hoghooghi, I. Ozdur, S. Bhooplapur, and P. J. Delfyett, “Direct modulation and channel filtering of phase-modulated signals using an injection-locked VCSEL,” IEEE Photon. Technol. Lett. 22(20), 1509–1511 (2010).
    [CrossRef]
  9. Q. Gu, W. Hofmann, M. C. Amann, and L. Chrostowski, “Optically injection-locked VCSEL as a duplex transmitter/receiver,” IEEE Photon. Technol. Lett. 20(7), 463–465 (2008).
    [CrossRef]
  10. S. Wieczorek, W. W. Chow, L. Chrostowski, and C. J. Chang-Hasnain, “Improved semiconductor-laser dynamics from induced population pulsation,” IEEE J. Sel. Top. Quantum Electron. 42(6), 552–562 (2006).
    [CrossRef]
  11. S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” IEEE/OSA, J. Lightwave Technol. 12(3), 418–424 (1994).
    [CrossRef]
  12. G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” IEEE/OSA, J. Lightwave Technol. 14(10), 2367–2373 (1996).
    [CrossRef]
  13. H. H. Lu, H. C. Peng, W. S. Tsai, C. C. Lin, S. J. Tzeng, and Y. Z. Lin, “Bidirectional hybrid CATV/radio-over-fiber WDM transport system,” Opt. Lett. 35(3), 279–281 (2010).
    [CrossRef] [PubMed]
  14. M. R. Phillips and D. M. Ott, “Crosstalk due to optical fiber nonlinearities in WDM CATV lightwave systems,” IEEE/OSA, J. Lightwave Technol. 17(10), 1782–1792 (1999).
    [CrossRef]

2011

P. Y. Wu, H. H. Lu, C. L. Ying, C. Y. Li, and H. S. Su, “An up-converted phase modulated fiber optical CATV transport system,” IEEE/OSA, J. Lightwave Technol. 29(16), 2422–2427 (2011).
[CrossRef]

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Optical beamforming networks employing phase modulation and direct detection,” Opt. Commun. 284(12), 2695–2699 (2011).
[CrossRef]

2010

N. Hoghooghi, I. Ozdur, S. Bhooplapur, and P. J. Delfyett, “Direct modulation and channel filtering of phase-modulated signals using an injection-locked VCSEL,” IEEE Photon. Technol. Lett. 22(20), 1509–1511 (2010).
[CrossRef]

H. H. Lu, H. C. Peng, W. S. Tsai, C. C. Lin, S. J. Tzeng, and Y. Z. Lin, “Bidirectional hybrid CATV/radio-over-fiber WDM transport system,” Opt. Lett. 35(3), 279–281 (2010).
[CrossRef] [PubMed]

2009

S. J. Tzeng, H. H. Lu, C. Y. Li, K. H. Chang, and C. H. Lee, “CSO/CTB performance improvement by using Fabry-Perot etalon at the receiving site,” Prog. Electromagn Res Lett. 6(14), 107–113 (2009).
[CrossRef]

2008

H. H. Lu, A. S. Patra, S. J. Tzeng, H. C. Peng, and W. I. Lin, “Improvement of fiber optical CATV transport systems performance based on lower-frequency side mode injection-locked technique,” IEEE Photon. Technol. Lett. 20(5), 351–353 (2008).
[CrossRef]

Q. Gu, W. Hofmann, M. C. Amann, and L. Chrostowski, “Optically injection-locked VCSEL as a duplex transmitter/receiver,” IEEE Photon. Technol. Lett. 20(7), 463–465 (2008).
[CrossRef]

2007

H. Kim, S. B. Jun, and Y. C. Chung, “Raman crosstalk suppression in CATV overlay passive optical network,” IEEE Photon. Technol. Lett. 19 (9), 695–697 (2007).
[CrossRef]

2006

S. Wieczorek, W. W. Chow, L. Chrostowski, and C. J. Chang-Hasnain, “Improved semiconductor-laser dynamics from induced population pulsation,” IEEE J. Sel. Top. Quantum Electron. 42(6), 552–562 (2006).
[CrossRef]

1999

M. R. Phillips and D. M. Ott, “Crosstalk due to optical fiber nonlinearities in WDM CATV lightwave systems,” IEEE/OSA, J. Lightwave Technol. 17(10), 1782–1792 (1999).
[CrossRef]

1997

D. Piehler, X. Zou, C. Y. Kuo, A. Nilsson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55dB CNR over 50km of fiber in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33(3), 226–227 (1997).
[CrossRef]

1996

G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” IEEE/OSA, J. Lightwave Technol. 14(10), 2367–2373 (1996).
[CrossRef]

1994

S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” IEEE/OSA, J. Lightwave Technol. 12(3), 418–424 (1994).
[CrossRef]

1991

O. Lidoyne and P. Gallion, “Analysis of receiver using injection-locked semiconductor laser for direct demodulation of PSK optical signals,” Electron. Lett. 27(11), 995–997 (1991).
[CrossRef]

Amann, M. C.

Q. Gu, W. Hofmann, M. C. Amann, and L. Chrostowski, “Optically injection-locked VCSEL as a duplex transmitter/receiver,” IEEE Photon. Technol. Lett. 20(7), 463–465 (2008).
[CrossRef]

Bhooplapur, S.

N. Hoghooghi, I. Ozdur, S. Bhooplapur, and P. J. Delfyett, “Direct modulation and channel filtering of phase-modulated signals using an injection-locked VCSEL,” IEEE Photon. Technol. Lett. 22(20), 1509–1511 (2010).
[CrossRef]

Burkhard, H.

S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” IEEE/OSA, J. Lightwave Technol. 12(3), 418–424 (1994).
[CrossRef]

Chang, K. H.

S. J. Tzeng, H. H. Lu, C. Y. Li, K. H. Chang, and C. H. Lee, “CSO/CTB performance improvement by using Fabry-Perot etalon at the receiving site,” Prog. Electromagn Res Lett. 6(14), 107–113 (2009).
[CrossRef]

Chang-Hasnain, C. J.

S. Wieczorek, W. W. Chow, L. Chrostowski, and C. J. Chang-Hasnain, “Improved semiconductor-laser dynamics from induced population pulsation,” IEEE J. Sel. Top. Quantum Electron. 42(6), 552–562 (2006).
[CrossRef]

Chow, W. W.

S. Wieczorek, W. W. Chow, L. Chrostowski, and C. J. Chang-Hasnain, “Improved semiconductor-laser dynamics from induced population pulsation,” IEEE J. Sel. Top. Quantum Electron. 42(6), 552–562 (2006).
[CrossRef]

Chrostowski, L.

Q. Gu, W. Hofmann, M. C. Amann, and L. Chrostowski, “Optically injection-locked VCSEL as a duplex transmitter/receiver,” IEEE Photon. Technol. Lett. 20(7), 463–465 (2008).
[CrossRef]

S. Wieczorek, W. W. Chow, L. Chrostowski, and C. J. Chang-Hasnain, “Improved semiconductor-laser dynamics from induced population pulsation,” IEEE J. Sel. Top. Quantum Electron. 42(6), 552–562 (2006).
[CrossRef]

Chung, Y. C.

H. Kim, S. B. Jun, and Y. C. Chung, “Raman crosstalk suppression in CATV overlay passive optical network,” IEEE Photon. Technol. Lett. 19 (9), 695–697 (2007).
[CrossRef]

Delfyett, P. J.

N. Hoghooghi, I. Ozdur, S. Bhooplapur, and P. J. Delfyett, “Direct modulation and channel filtering of phase-modulated signals using an injection-locked VCSEL,” IEEE Photon. Technol. Lett. 22(20), 1509–1511 (2010).
[CrossRef]

Gallion, P.

O. Lidoyne and P. Gallion, “Analysis of receiver using injection-locked semiconductor laser for direct demodulation of PSK optical signals,” Electron. Lett. 27(11), 995–997 (1991).
[CrossRef]

Garcia, G.

D. Piehler, X. Zou, C. Y. Kuo, A. Nilsson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55dB CNR over 50km of fiber in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33(3), 226–227 (1997).
[CrossRef]

Gu, Q.

Q. Gu, W. Hofmann, M. C. Amann, and L. Chrostowski, “Optically injection-locked VCSEL as a duplex transmitter/receiver,” IEEE Photon. Technol. Lett. 20(7), 463–465 (2008).
[CrossRef]

Hofmann, W.

Q. Gu, W. Hofmann, M. C. Amann, and L. Chrostowski, “Optically injection-locked VCSEL as a duplex transmitter/receiver,” IEEE Photon. Technol. Lett. 20(7), 463–465 (2008).
[CrossRef]

Hoghooghi, N.

N. Hoghooghi, I. Ozdur, S. Bhooplapur, and P. J. Delfyett, “Direct modulation and channel filtering of phase-modulated signals using an injection-locked VCSEL,” IEEE Photon. Technol. Lett. 22(20), 1509–1511 (2010).
[CrossRef]

Jun, S. B.

H. Kim, S. B. Jun, and Y. C. Chung, “Raman crosstalk suppression in CATV overlay passive optical network,” IEEE Photon. Technol. Lett. 19 (9), 695–697 (2007).
[CrossRef]

Kim, H.

H. Kim, S. B. Jun, and Y. C. Chung, “Raman crosstalk suppression in CATV overlay passive optical network,” IEEE Photon. Technol. Lett. 19 (9), 695–697 (2007).
[CrossRef]

Kleefeld, J.

D. Piehler, X. Zou, C. Y. Kuo, A. Nilsson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55dB CNR over 50km of fiber in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33(3), 226–227 (1997).
[CrossRef]

Kuo, C. Y.

D. Piehler, X. Zou, C. Y. Kuo, A. Nilsson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55dB CNR over 50km of fiber in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33(3), 226–227 (1997).
[CrossRef]

Lee, C. H.

S. J. Tzeng, H. H. Lu, C. Y. Li, K. H. Chang, and C. H. Lee, “CSO/CTB performance improvement by using Fabry-Perot etalon at the receiving site,” Prog. Electromagn Res Lett. 6(14), 107–113 (2009).
[CrossRef]

Li, C. Y.

P. Y. Wu, H. H. Lu, C. L. Ying, C. Y. Li, and H. S. Su, “An up-converted phase modulated fiber optical CATV transport system,” IEEE/OSA, J. Lightwave Technol. 29(16), 2422–2427 (2011).
[CrossRef]

S. J. Tzeng, H. H. Lu, C. Y. Li, K. H. Chang, and C. H. Lee, “CSO/CTB performance improvement by using Fabry-Perot etalon at the receiving site,” Prog. Electromagn Res Lett. 6(14), 107–113 (2009).
[CrossRef]

Lidoyne, O.

O. Lidoyne and P. Gallion, “Analysis of receiver using injection-locked semiconductor laser for direct demodulation of PSK optical signals,” Electron. Lett. 27(11), 995–997 (1991).
[CrossRef]

Lin, C. C.

Lin, W. I.

H. H. Lu, A. S. Patra, S. J. Tzeng, H. C. Peng, and W. I. Lin, “Improvement of fiber optical CATV transport systems performance based on lower-frequency side mode injection-locked technique,” IEEE Photon. Technol. Lett. 20(5), 351–353 (2008).
[CrossRef]

Lin, Y. Z.

Lu, H. H.

P. Y. Wu, H. H. Lu, C. L. Ying, C. Y. Li, and H. S. Su, “An up-converted phase modulated fiber optical CATV transport system,” IEEE/OSA, J. Lightwave Technol. 29(16), 2422–2427 (2011).
[CrossRef]

H. H. Lu, H. C. Peng, W. S. Tsai, C. C. Lin, S. J. Tzeng, and Y. Z. Lin, “Bidirectional hybrid CATV/radio-over-fiber WDM transport system,” Opt. Lett. 35(3), 279–281 (2010).
[CrossRef] [PubMed]

S. J. Tzeng, H. H. Lu, C. Y. Li, K. H. Chang, and C. H. Lee, “CSO/CTB performance improvement by using Fabry-Perot etalon at the receiving site,” Prog. Electromagn Res Lett. 6(14), 107–113 (2009).
[CrossRef]

H. H. Lu, A. S. Patra, S. J. Tzeng, H. C. Peng, and W. I. Lin, “Improvement of fiber optical CATV transport systems performance based on lower-frequency side mode injection-locked technique,” IEEE Photon. Technol. Lett. 20(5), 351–353 (2008).
[CrossRef]

Mathur, A.

D. Piehler, X. Zou, C. Y. Kuo, A. Nilsson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55dB CNR over 50km of fiber in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33(3), 226–227 (1997).
[CrossRef]

Mohrdiek, S.

S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” IEEE/OSA, J. Lightwave Technol. 12(3), 418–424 (1994).
[CrossRef]

Nilsson, A.

D. Piehler, X. Zou, C. Y. Kuo, A. Nilsson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55dB CNR over 50km of fiber in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33(3), 226–227 (1997).
[CrossRef]

Ott, D. M.

M. R. Phillips and D. M. Ott, “Crosstalk due to optical fiber nonlinearities in WDM CATV lightwave systems,” IEEE/OSA, J. Lightwave Technol. 17(10), 1782–1792 (1999).
[CrossRef]

Ozdur, I.

N. Hoghooghi, I. Ozdur, S. Bhooplapur, and P. J. Delfyett, “Direct modulation and channel filtering of phase-modulated signals using an injection-locked VCSEL,” IEEE Photon. Technol. Lett. 22(20), 1509–1511 (2010).
[CrossRef]

Patra, A. S.

H. H. Lu, A. S. Patra, S. J. Tzeng, H. C. Peng, and W. I. Lin, “Improvement of fiber optical CATV transport systems performance based on lower-frequency side mode injection-locked technique,” IEEE Photon. Technol. Lett. 20(5), 351–353 (2008).
[CrossRef]

Peng, H. C.

H. H. Lu, H. C. Peng, W. S. Tsai, C. C. Lin, S. J. Tzeng, and Y. Z. Lin, “Bidirectional hybrid CATV/radio-over-fiber WDM transport system,” Opt. Lett. 35(3), 279–281 (2010).
[CrossRef] [PubMed]

H. H. Lu, A. S. Patra, S. J. Tzeng, H. C. Peng, and W. I. Lin, “Improvement of fiber optical CATV transport systems performance based on lower-frequency side mode injection-locked technique,” IEEE Photon. Technol. Lett. 20(5), 351–353 (2008).
[CrossRef]

Phillips, M. R.

M. R. Phillips and D. M. Ott, “Crosstalk due to optical fiber nonlinearities in WDM CATV lightwave systems,” IEEE/OSA, J. Lightwave Technol. 17(10), 1782–1792 (1999).
[CrossRef]

Piehler, D.

D. Piehler, X. Zou, C. Y. Kuo, A. Nilsson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55dB CNR over 50km of fiber in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33(3), 226–227 (1997).
[CrossRef]

Ralston, J. D.

D. Piehler, X. Zou, C. Y. Kuo, A. Nilsson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55dB CNR over 50km of fiber in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33(3), 226–227 (1997).
[CrossRef]

Su, H. S.

P. Y. Wu, H. H. Lu, C. L. Ying, C. Y. Li, and H. S. Su, “An up-converted phase modulated fiber optical CATV transport system,” IEEE/OSA, J. Lightwave Technol. 29(16), 2422–2427 (2011).
[CrossRef]

Tsai, W. S.

Tzeng, S. J.

H. H. Lu, H. C. Peng, W. S. Tsai, C. C. Lin, S. J. Tzeng, and Y. Z. Lin, “Bidirectional hybrid CATV/radio-over-fiber WDM transport system,” Opt. Lett. 35(3), 279–281 (2010).
[CrossRef] [PubMed]

S. J. Tzeng, H. H. Lu, C. Y. Li, K. H. Chang, and C. H. Lee, “CSO/CTB performance improvement by using Fabry-Perot etalon at the receiving site,” Prog. Electromagn Res Lett. 6(14), 107–113 (2009).
[CrossRef]

H. H. Lu, A. S. Patra, S. J. Tzeng, H. C. Peng, and W. I. Lin, “Improvement of fiber optical CATV transport systems performance based on lower-frequency side mode injection-locked technique,” IEEE Photon. Technol. Lett. 20(5), 351–353 (2008).
[CrossRef]

Walter, H.

S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” IEEE/OSA, J. Lightwave Technol. 12(3), 418–424 (1994).
[CrossRef]

Wieczorek, S.

S. Wieczorek, W. W. Chow, L. Chrostowski, and C. J. Chang-Hasnain, “Improved semiconductor-laser dynamics from induced population pulsation,” IEEE J. Sel. Top. Quantum Electron. 42(6), 552–562 (2006).
[CrossRef]

Wu, P. Y.

P. Y. Wu, H. H. Lu, C. L. Ying, C. Y. Li, and H. S. Su, “An up-converted phase modulated fiber optical CATV transport system,” IEEE/OSA, J. Lightwave Technol. 29(16), 2422–2427 (2011).
[CrossRef]

Xue, X.

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Optical beamforming networks employing phase modulation and direct detection,” Opt. Commun. 284(12), 2695–2699 (2011).
[CrossRef]

Yabre, G.

G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” IEEE/OSA, J. Lightwave Technol. 14(10), 2367–2373 (1996).
[CrossRef]

Ying, C. L.

P. Y. Wu, H. H. Lu, C. L. Ying, C. Y. Li, and H. S. Su, “An up-converted phase modulated fiber optical CATV transport system,” IEEE/OSA, J. Lightwave Technol. 29(16), 2422–2427 (2011).
[CrossRef]

Zhang, H.

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Optical beamforming networks employing phase modulation and direct detection,” Opt. Commun. 284(12), 2695–2699 (2011).
[CrossRef]

Zheng, X.

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Optical beamforming networks employing phase modulation and direct detection,” Opt. Commun. 284(12), 2695–2699 (2011).
[CrossRef]

Zhou, B.

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Optical beamforming networks employing phase modulation and direct detection,” Opt. Commun. 284(12), 2695–2699 (2011).
[CrossRef]

Zou, X.

D. Piehler, X. Zou, C. Y. Kuo, A. Nilsson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55dB CNR over 50km of fiber in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33(3), 226–227 (1997).
[CrossRef]

Electron. Lett.

D. Piehler, X. Zou, C. Y. Kuo, A. Nilsson, J. Kleefeld, G. Garcia, J. D. Ralston, and A. Mathur, “55dB CNR over 50km of fiber in an 80-channel externally-modulated AM-CATV system without optical amplification,” Electron. Lett. 33(3), 226–227 (1997).
[CrossRef]

O. Lidoyne and P. Gallion, “Analysis of receiver using injection-locked semiconductor laser for direct demodulation of PSK optical signals,” Electron. Lett. 27(11), 995–997 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. Wieczorek, W. W. Chow, L. Chrostowski, and C. J. Chang-Hasnain, “Improved semiconductor-laser dynamics from induced population pulsation,” IEEE J. Sel. Top. Quantum Electron. 42(6), 552–562 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

N. Hoghooghi, I. Ozdur, S. Bhooplapur, and P. J. Delfyett, “Direct modulation and channel filtering of phase-modulated signals using an injection-locked VCSEL,” IEEE Photon. Technol. Lett. 22(20), 1509–1511 (2010).
[CrossRef]

Q. Gu, W. Hofmann, M. C. Amann, and L. Chrostowski, “Optically injection-locked VCSEL as a duplex transmitter/receiver,” IEEE Photon. Technol. Lett. 20(7), 463–465 (2008).
[CrossRef]

H. H. Lu, A. S. Patra, S. J. Tzeng, H. C. Peng, and W. I. Lin, “Improvement of fiber optical CATV transport systems performance based on lower-frequency side mode injection-locked technique,” IEEE Photon. Technol. Lett. 20(5), 351–353 (2008).
[CrossRef]

H. Kim, S. B. Jun, and Y. C. Chung, “Raman crosstalk suppression in CATV overlay passive optical network,” IEEE Photon. Technol. Lett. 19 (9), 695–697 (2007).
[CrossRef]

IEEE/OSA, J. Lightwave Technol.

P. Y. Wu, H. H. Lu, C. L. Ying, C. Y. Li, and H. S. Su, “An up-converted phase modulated fiber optical CATV transport system,” IEEE/OSA, J. Lightwave Technol. 29(16), 2422–2427 (2011).
[CrossRef]

S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” IEEE/OSA, J. Lightwave Technol. 12(3), 418–424 (1994).
[CrossRef]

G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” IEEE/OSA, J. Lightwave Technol. 14(10), 2367–2373 (1996).
[CrossRef]

M. R. Phillips and D. M. Ott, “Crosstalk due to optical fiber nonlinearities in WDM CATV lightwave systems,” IEEE/OSA, J. Lightwave Technol. 17(10), 1782–1792 (1999).
[CrossRef]

Opt. Commun.

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Optical beamforming networks employing phase modulation and direct detection,” Opt. Commun. 284(12), 2695–2699 (2011).
[CrossRef]

Opt. Lett.

Prog. Electromagn Res Lett.

S. J. Tzeng, H. H. Lu, C. Y. Li, K. H. Chang, and C. H. Lee, “CSO/CTB performance improvement by using Fabry-Perot etalon at the receiving site,” Prog. Electromagn Res Lett. 6(14), 107–113 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) System I: A fiber optical CATV transport system using traditional DI and CATV receiver at the receiving site. (b) System II: The experimental configuration of our proposed fiber optical CATV transport systems employing an injection-locked DFB LD for the transceiver operations at the receiving site.

Fig. 2
Fig. 2

The experimental configuration of the simulated up-conversion CATV transport systems.

Fig. 3
Fig. 3

Electrical spectrum of the received two carriers (CH77 and CH78, down-converted from f1 and f2).

Fig. 4
Fig. 4

The measured downstream (a) CNR, (b) CSO, and (c) CTB values of system II; as DFB LD3 under 3, 0, and −3 dBm injection power levels, respectively.

Fig. 5
Fig. 5

The measured downstream (a) CNR, (b) CSO, and (c) CTB values for BTB, system I, and system II (DFB LD3 with 3 dBm injection).

Fig. 6
Fig. 6

The measured upstream (a) CNR, (b) CSO, and (c) CTB values for systems I and II.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d<± k c 2π S i S (1+ α 2 )

Metrics