Abstract

Presented herein is the use of an ultrafast Si-based variable optical attenuator (VOA) as a Q-switch for rare earth-doped fiber lasers. The ultrafast VOA is based on a forward-biased p-i-n diode integrated with a ridge waveguide, which was originally designed and optimized for WDM channel power equalization in optical communication systems. By incorporating a Si-based VOA with a transient time of ~410 ns into an erbium-doped fiber-based Fabry-Perot cavity it has been shown that stable Q-switched pulses possessing a temporal width of less than ~86 ns can be readily obtained at a repetition rate of up to ~1 MHz. The laser’s peak power of ~38 W is shown to be obtainable at 20 kHz with a slope efficiency of ~21%.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [CrossRef]
  2. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-switched 0.1-mJ fiber laser system at 1.53 mum,” Opt. Lett. 24(6), 388–390 (1999).
    [CrossRef] [PubMed]
  3. Z. J. Chen, A. B. Grudinin, J. Porta, and J. D. Minelly, “Enhanced Q switching in double-clad fiber lasers,” Opt. Lett. 23(6), 454–456 (1998).
    [CrossRef] [PubMed]
  4. A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” Opt. Commun. 218(4–6), 337–344 (2003).
    [CrossRef]
  5. D. Huang, W. Liu, and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photon. Technol. Lett. 12(9), 1153–1155 (2000).
    [CrossRef]
  6. Y. Joeng, Y. Kim, A. Liem, K. Moerl, S. Hoefer, A. Tuennermann, and K. Oh, “Q-switching of Yb3+-doped fiber laser using a novel micro-optical wavelength on micro-actuating platform light modulator,” Opt. Express 13(25), 10302–10309 (2005).
    [CrossRef] [PubMed]
  7. P. Pérez-Millán, A. Díez, M. V. Andrés, D. Zalvidea, and R. Duchowicz, “Q-switched all-fiber laser based on magnetostriction modulation of a Bragg grating,” Opt. Express 13(13), 5046–5051 (2005).
    [CrossRef] [PubMed]
  8. A. Creunteanu, D. Bouyge, D. Sabourdy, P. Blondy, V. couderc, L. Grossard, P. H. Pioger, and A. barthelemy, “Deformable micro-electro-mechanical mirror integration in a fibre laser Q-switch system,” J. Opt. A, Pure Appl. Opt. 8, S347–S351 (2006).
  9. K. Kieu and M. Mansuripur, “Active Q switching of a fiber laser with a microsphere resonator,” Opt. Lett. 31(24), 3568–3570 (2006).
    [CrossRef] [PubMed]
  10. F. Bammer and R. Petkovsek, “Q-switching of a fiber laser with a single crystal photo-elastic modulator,” Opt. Express 15(10), 6177–6182 (2007).
    [CrossRef] [PubMed]
  11. R. J. Williams, N. Jovanovic, G. D. Marshall, and M. J. Withford, “All-optical, actively Q-switched fiber laser,” Opt. Express 18(8), 7714–7723 (2010).
    [CrossRef] [PubMed]
  12. C. Lee, “A MEMS VOA using electrothermal actuators,” J. Lightwave Technol. 25(2), 490–498 (2007).
    [CrossRef]
  13. Y.-H. Wu, Y.-H. Lin, Y.-Q. Lu, H. Ren, Y.-H. Fan, J. Wu, and S.-T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express 12(25), 6382–6389 (2004).
    [CrossRef] [PubMed]
  14. M. Asghari, “Silicon photonics: a low cost integration platform for datacom and telecom applications,” Proc. OFC/NFOEC’2008, paper NThA4 (2008).
  15. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [CrossRef]
  16. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  17. S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, H. Nishi, R. Kou, and S.-I. Itabashi, “Influence of carrier lifetime on performance of silicon p-i-n variable optical attenuators fabricated on submicrometer rib waveguides,” Opt. Express 18(11), 11282–11291 (2010).
    [CrossRef] [PubMed]

2010

2007

2006

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

A. Creunteanu, D. Bouyge, D. Sabourdy, P. Blondy, V. couderc, L. Grossard, P. H. Pioger, and A. barthelemy, “Deformable micro-electro-mechanical mirror integration in a fibre laser Q-switch system,” J. Opt. A, Pure Appl. Opt. 8, S347–S351 (2006).

K. Kieu and M. Mansuripur, “Active Q switching of a fiber laser with a microsphere resonator,” Opt. Lett. 31(24), 3568–3570 (2006).
[CrossRef] [PubMed]

2005

2004

2003

A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” Opt. Commun. 218(4–6), 337–344 (2003).
[CrossRef]

2000

D. Huang, W. Liu, and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photon. Technol. Lett. 12(9), 1153–1155 (2000).
[CrossRef]

1999

1998

Andrés, M. V.

Bammer, F.

barthelemy, A.

A. Creunteanu, D. Bouyge, D. Sabourdy, P. Blondy, V. couderc, L. Grossard, P. H. Pioger, and A. barthelemy, “Deformable micro-electro-mechanical mirror integration in a fibre laser Q-switch system,” J. Opt. A, Pure Appl. Opt. 8, S347–S351 (2006).

Blondy, P.

A. Creunteanu, D. Bouyge, D. Sabourdy, P. Blondy, V. couderc, L. Grossard, P. H. Pioger, and A. barthelemy, “Deformable micro-electro-mechanical mirror integration in a fibre laser Q-switch system,” J. Opt. A, Pure Appl. Opt. 8, S347–S351 (2006).

Bouyge, D.

A. Creunteanu, D. Bouyge, D. Sabourdy, P. Blondy, V. couderc, L. Grossard, P. H. Pioger, and A. barthelemy, “Deformable micro-electro-mechanical mirror integration in a fibre laser Q-switch system,” J. Opt. A, Pure Appl. Opt. 8, S347–S351 (2006).

Chen, Z. J.

Clarkson, W. A.

couderc, V.

A. Creunteanu, D. Bouyge, D. Sabourdy, P. Blondy, V. couderc, L. Grossard, P. H. Pioger, and A. barthelemy, “Deformable micro-electro-mechanical mirror integration in a fibre laser Q-switch system,” J. Opt. A, Pure Appl. Opt. 8, S347–S351 (2006).

Creunteanu, A.

A. Creunteanu, D. Bouyge, D. Sabourdy, P. Blondy, V. couderc, L. Grossard, P. H. Pioger, and A. barthelemy, “Deformable micro-electro-mechanical mirror integration in a fibre laser Q-switch system,” J. Opt. A, Pure Appl. Opt. 8, S347–S351 (2006).

Díez, A.

Duchowicz, R.

El-Sherif, A. F.

A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” Opt. Commun. 218(4–6), 337–344 (2003).
[CrossRef]

Fan, Y.-H.

Fathpour, S.

Gini, E.

Grossard, L.

A. Creunteanu, D. Bouyge, D. Sabourdy, P. Blondy, V. couderc, L. Grossard, P. H. Pioger, and A. barthelemy, “Deformable micro-electro-mechanical mirror integration in a fibre laser Q-switch system,” J. Opt. A, Pure Appl. Opt. 8, S347–S351 (2006).

Grudinin, A. B.

Häring, R.

Hoefer, S.

Huang, D.

D. Huang, W. Liu, and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photon. Technol. Lett. 12(9), 1153–1155 (2000).
[CrossRef]

Itabashi, S.-I.

Jalali, B.

Joeng, Y.

Jovanovic, N.

Keller, U.

Kieu, K.

Kim, Y.

King, T. A.

A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” Opt. Commun. 218(4–6), 337–344 (2003).
[CrossRef]

Kou, R.

Lee, C.

Liem, A.

Lin, Y.-H.

Liu, W.

D. Huang, W. Liu, and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photon. Technol. Lett. 12(9), 1153–1155 (2000).
[CrossRef]

Lu, Y.-Q.

Mansuripur, M.

Marshall, G. D.

Melchior, H.

Minelly, J. D.

Moerl, K.

Nilsson, J.

Nishi, H.

Offerhaus, H. L.

Oh, K.

Park, S.

Paschotta, R.

Pérez-Millán, P.

Petkovsek, R.

Pioger, P. H.

A. Creunteanu, D. Bouyge, D. Sabourdy, P. Blondy, V. couderc, L. Grossard, P. H. Pioger, and A. barthelemy, “Deformable micro-electro-mechanical mirror integration in a fibre laser Q-switch system,” J. Opt. A, Pure Appl. Opt. 8, S347–S351 (2006).

Porta, J.

Ren, H.

Richardson, D. J.

Sabourdy, D.

A. Creunteanu, D. Bouyge, D. Sabourdy, P. Blondy, V. couderc, L. Grossard, P. H. Pioger, and A. barthelemy, “Deformable micro-electro-mechanical mirror integration in a fibre laser Q-switch system,” J. Opt. A, Pure Appl. Opt. 8, S347–S351 (2006).

Shinojima, H.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

Tsuchizawa, T.

Tuennermann, A.

Watanabe, T.

Williams, R. J.

Withford, M. J.

Wu, J.

Wu, S.-T.

Wu, Y.-H.

Yamada, K.

Yang, C. C.

D. Huang, W. Liu, and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photon. Technol. Lett. 12(9), 1153–1155 (2000).
[CrossRef]

Zalvidea, D.

IEEE J. Sel. Top. Quantum Electron.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Huang, W. Liu, and C. C. Yang, “Q-switched all-fiber laser with an acoustically modulated fiber attenuator,” IEEE Photon. Technol. Lett. 12(9), 1153–1155 (2000).
[CrossRef]

J. Lightwave Technol.

J. Opt. A, Pure Appl. Opt.

A. Creunteanu, D. Bouyge, D. Sabourdy, P. Blondy, V. couderc, L. Grossard, P. H. Pioger, and A. barthelemy, “Deformable micro-electro-mechanical mirror integration in a fibre laser Q-switch system,” J. Opt. A, Pure Appl. Opt. 8, S347–S351 (2006).

J. Opt. Soc. Am. B

Opt. Commun.

A. F. El-Sherif and T. A. King, “High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator,” Opt. Commun. 218(4–6), 337–344 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Other

M. Asghari, “Silicon photonics: a low cost integration platform for datacom and telecom applications,” Proc. OFC/NFOEC’2008, paper NThA4 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The schematic of our Q-switched EDF laser and (b) the measured optical spectrum of the FBG used in this experimental configuration.

Fig. 2
Fig. 2

(a) The measured optical attenuation v.s. the driving current curve and (b) the transient response of the ultrafast Si-based VOA used in this experiment.

Fig. 3
Fig. 3

(a) The measured oscilloscope trace of the Q-switched pulses at 20 kHz and (b) the close-up view of a pulse.

Fig. 4
Fig. 4

(a) The measured optical spectrum of the Q-switched laser output at 20 kHz and (b) the measured average output power vs. the pump power. The resolution bandwidth of the optical spectrum analyzer used was 0.02 nm.

Fig. 5
Fig. 5

(a) The measured peak power and (b) the temporal width of the output pulses as a function of the repetition rate.

Fig. 6
Fig. 6

(a) The measured oscilloscope trace of the Q-switched pulses at 1 MHz and (b) the close-up view of a pulse.

Fig. 7
Fig. 7

The measured oscilloscope traces of the applied electrical pulse, the corresponding VOA response, and the output Q-switched pulse at repetition rates of (a) 1.5 and (b) 2 MHz, respectively.

Metrics