Abstract

The photosensitivity of germanium free Bi-Al-doped silica fibers with different bismuth concentrations was investigated using ArF excimer laser radiation at 193 nm and fiber grating formation. For the fiber with the highest bismuth concentration maximum refractive index changes of 2.2 × 10−3 and 2.0 × 10−4 were obtained for hydrogen loaded and unloaded fibers, respectively. Irradiation induced tensile stress changes were observed in the fiber core of H2-loaded and unloaded fibers. The results indicate a contribution of compaction to the total refractive index change in both cases.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
    [CrossRef]
  2. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. Part 2 40(3B), 279–281 (2001).
  3. T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
    [CrossRef]
  4. Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82(19), 3325–3326 (2003).
    [CrossRef]
  5. T. Haruna, M. Kakui, T. Taru, S. Ishikawa, and M. Onishi, “Silica-based bismuth-doped fiber for ultrabroad band light-source and optical amplification around 1.1 μm,” in Optical Amplifiers and Their Applications Topical Meeting (OAA), (OSA, 2005), MC3.
  6. V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres,” in ECOC 2005 – 31st European Conference and Exhibition on Optical Communication, (IEE, 2005), Th3.3.5.
  7. V. V. Dvoyrin, O. I. Medvedkov, V. M. Mashinsky, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Optical amplification in 1430-1495 nm range and laser action in Bi-doped fibers,” Opt. Express 16(21), 16971–16976 (2008).
    [CrossRef] [PubMed]
  8. E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
    [CrossRef]
  9. A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178 nm CW bismuth-doped fiber laser with 6.4 W output for direct frequency doubling,” Opt. Express 15(9), 5473–5476 (2007).
    [CrossRef] [PubMed]
  10. I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
    [CrossRef]
  11. Z. Yang, Q. Zhang, and Z. Jiang, “Photo-induced refractive index change of bismuth-based silicate glass,” J. Phys. D 38(9), 1461–1463 (2005).
    [CrossRef]
  12. H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic- induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
    [CrossRef]
  13. P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20(11), 1346–1348 (1995).
    [CrossRef] [PubMed]
  14. F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
    [CrossRef]
  15. H. G. Limberger, C. Ban, R. P. Salathé, S. A. Slattery, and D. N. Nikogosyan, “Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber,” Opt. Express 15(9), 5610–5615 (2007).
    [CrossRef] [PubMed]
  16. H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett. 46(5), 363–365 (2010).
    [CrossRef]
  17. F. Dürr, “Laser-Induced Stress Changes in Optical Fibers,” PhD thesis no. 3314 (Swiss Federal Institute of Technology, Lausanne, 2005).
  18. J. Albert, M. Fokine, and W. Margulis, “Grating formation in pure silica-core fibers,” Opt. Lett. 27(10), 809–811 (2002).
    [CrossRef] [PubMed]
  19. B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence ArF excimer-laser light,” Electron. Lett. 31(11), 879–880 (1995).
    [CrossRef]
  20. I. Riant and F. Haller, “Study of the Photosensitivity at 193 nm and Comparison with Photosensitivity at 240 nm Influence of Fiber Tension: Type IIA Aging,” J. Lightwave Technol. 15(8), 1464–1469 (1997).
    [CrossRef]
  21. J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
    [CrossRef]
  22. C. Ban, H. G. Limberger, V. M. Mashinsky, V. V. Dvoyrin, L. I. Bulatov, and E. M. Dianov, “ArF excimer laser induced refractive index changes in Bi-Al-doped silica optical fiber,” in LPHYS'08: 17th International Laser Physics workshop, 2008).
  23. C. Ban, H. G. Limberger, V. M. Mashinsky, V. V. Dvoyrin, L. I. Bulatov, and E. M. Dianov, “Photosensitivity of Bi-Al-doped silica optical fibers to 193 nm excimer laser irradiation,” in 3rd European Physical Society - Quantum Electronics and Optics Division Europhoton Conference on “Solid-state and fiber coherent light sources” (2008).
  24. C. Ban, H. G. Limberger, V. Mashinsky, V. Dvoyrin, and E. Dianov, “UV-Photosensitivity of Germanium-free Bi-Al Silica Fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides BGPP: OSA Topical Meeting, (OSA, 2010), BWD3.
  25. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers—a new active medium for lasers and amplifiers,” Opt. Lett. 31(20), 2966–2968 (2006).
    [CrossRef] [PubMed]
  26. P. L. Chu and T. Whitbread, “Measurement of stresses in optical fiber and preform,” Appl. Opt. 21(23), 4241–4245 (1982).
    [CrossRef] [PubMed]
  27. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
    [CrossRef]
  28. F. Dürr, H. G. Limberger, R. P. Salathé, and A. D. Yablon, “Inelastic Strain Birefringence in Optical Fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (OSA 2006) (2006), OWA 2.
  29. W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
    [CrossRef]
  30. W. Hermann, M. Hutjens, and D. U. Wiechert, “Stress in optical waveguides. 3: Stress induced index change,” Appl. Opt. 28(11), 1980–1983 (1989).
    [CrossRef] [PubMed]
  31. Y. Larionov, A. Rybaltovsky, S. Semjonov, M. Bubnov, E. Dianov, S. Vartapetov, M. Kurzanov, A. Obidin, V. Yamschikov, A. N. Guryanov, M. V. Yashkov, and A. A. Umnikov, “High photosensitivity of Al2O3-doped fibers to 193 nm and 157 nm excimer laser irradiation,” in Bragg Gratings Photosensitivity and Poling in Glass Waveguides, 2003), 46–48.

2010

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett. 46(5), 363–365 (2010).
[CrossRef]

2008

2007

2006

2005

Z. Yang, Q. Zhang, and Z. Jiang, “Photo-induced refractive index change of bismuth-based silicate glass,” J. Phys. D 38(9), 1461–1463 (2005).
[CrossRef]

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

2004

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[CrossRef]

2003

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82(19), 3325–3326 (2003).
[CrossRef]

2002

2001

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. Part 2 40(3B), 279–281 (2001).

1999

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

1997

I. Riant and F. Haller, “Study of the Photosensitivity at 193 nm and Comparison with Photosensitivity at 240 nm Influence of Fiber Tension: Type IIA Aging,” J. Lightwave Technol. 15(8), 1464–1469 (1997).
[CrossRef]

1996

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic- induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[CrossRef]

1995

B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence ArF excimer-laser light,” Electron. Lett. 31(11), 879–880 (1995).
[CrossRef]

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
[CrossRef]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20(11), 1346–1348 (1995).
[CrossRef] [PubMed]

1989

1982

1959

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[CrossRef]

Albert, J.

J. Albert, M. Fokine, and W. Margulis, “Grating formation in pure silica-core fibers,” Opt. Lett. 27(10), 809–811 (2002).
[CrossRef] [PubMed]

B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence ArF excimer-laser light,” Electron. Lett. 31(11), 879–880 (1995).
[CrossRef]

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
[CrossRef]

Ban, C.

Bigot, L.

Bilodeau, F.

B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence ArF excimer-laser light,” Electron. Lett. 31(11), 879–880 (1995).
[CrossRef]

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
[CrossRef]

Bouwmans, G.

Bufetov, I. A.

Bulatov, L. I.

Chu, P. L.

Cochet, F.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic- induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[CrossRef]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20(11), 1346–1348 (1995).
[CrossRef] [PubMed]

Dianov, E. M.

Douay, M.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[CrossRef]

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Dürr, F.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Dvoyrin, V. V.

Favre, A.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[CrossRef]

Ferin, A. A.

Fertein, E.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Fokine, M.

Fonjallaz, P. Y.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic- induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[CrossRef]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20(11), 1346–1348 (1995).
[CrossRef] [PubMed]

Fujimoto, Y.

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82(19), 3325–3326 (2003).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. Part 2 40(3B), 279–281 (2001).

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Fujita, H.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Guryanov, A. N.

Gur'yanov, A. N.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

Haller, F.

I. Riant and F. Haller, “Study of the Photosensitivity at 193 nm and Comparison with Photosensitivity at 240 nm Influence of Fiber Tension: Type IIA Aging,” J. Lightwave Technol. 15(8), 1464–1469 (1997).
[CrossRef]

Hermann, W.

Hill, K. O.

B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence ArF excimer-laser light,” Electron. Lett. 31(11), 879–880 (1995).
[CrossRef]

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
[CrossRef]

Hindle, F.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Hutjens, M.

Jiang, Z.

Z. Yang, Q. Zhang, and Z. Jiang, “Photo-induced refractive index change of bismuth-based silicate glass,” J. Phys. D 38(9), 1461–1463 (2005).
[CrossRef]

Johnson, D. C.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
[CrossRef]

B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence ArF excimer-laser light,” Electron. Lett. 31(11), 879–880 (1995).
[CrossRef]

Kanabe, T.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Khopin, V. F.

Kustov, E. F.

Leuenberger, B.

Limberger, H. G.

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett. 46(5), 363–365 (2010).
[CrossRef]

H. G. Limberger, C. Ban, R. P. Salathé, S. A. Slattery, and D. N. Nikogosyan, “Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber,” Opt. Express 15(9), 5610–5615 (2007).
[CrossRef] [PubMed]

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic- induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[CrossRef]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20(11), 1346–1348 (1995).
[CrossRef] [PubMed]

Malo, B.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
[CrossRef]

B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence ArF excimer-laser light,” Electron. Lett. 31(11), 879–880 (1995).
[CrossRef]

Margulis, W.

Mashinsky, V. M.

Medvedkov, O. I.

Melkumov, M. A.

Murata, K.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Nakatsuka, M.

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82(19), 3325–3326 (2003).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. Part 2 40(3B), 279–281 (2001).

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

Nikogosyan, D. N.

Ohishi, Y.

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
[CrossRef]

Popov, S. V.

Post, D.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[CrossRef]

Primak, W.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[CrossRef]

Przygodzki, C.

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

Pureur, V.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[CrossRef]

Razdobreev, I.

Riant, I.

I. Riant and F. Haller, “Study of the Photosensitivity at 193 nm and Comparison with Photosensitivity at 240 nm Influence of Fiber Tension: Type IIA Aging,” J. Lightwave Technol. 15(8), 1464–1469 (1997).
[CrossRef]

Rulkov, A. B.

Salathé, R. P.

H. G. Limberger, C. Ban, R. P. Salathé, S. A. Slattery, and D. N. Nikogosyan, “Absence of UV-induced stress in Bragg gratings recorded by high-intensity 264 nm laser pulses in a hydrogenated standard telecom fiber,” Opt. Express 15(9), 5610–5615 (2007).
[CrossRef] [PubMed]

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic- induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[CrossRef]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20(11), 1346–1348 (1995).
[CrossRef] [PubMed]

Shubin, A. V.

Slattery, S. A.

Suzuki, T.

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
[CrossRef]

Taylor, J. R.

Theriault, S.

B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence ArF excimer-laser light,” Electron. Lett. 31(11), 879–880 (1995).
[CrossRef]

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
[CrossRef]

Umnikov, A. A.

Violakis, G.

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett. 46(5), 363–365 (2010).
[CrossRef]

Whitbread, T.

Wiechert, D. U.

Yablon, A. D.

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[CrossRef]

Yang, Z.

Z. Yang, Q. Zhang, and Z. Jiang, “Photo-induced refractive index change of bismuth-based silicate glass,” J. Phys. D 38(9), 1461–1463 (2005).
[CrossRef]

Yashkov, M. V.

Zhang, Q.

Z. Yang, Q. Zhang, and Z. Jiang, “Photo-induced refractive index change of bismuth-based silicate glass,” J. Phys. D 38(9), 1461–1463 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, “Optical amplification in bismuth-doped silica glass,” Appl. Phys. Lett. 82(19), 3325–3326 (2003).
[CrossRef]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[CrossRef]

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathé, and F. Cochet, “Compaction- and photoelastic- induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[CrossRef]

F. Dürr, H. G. Limberger, R. P. Salathé, F. Hindle, M. Douay, E. Fertein, and C. Przygodzki, “Tomographic measurement of femtosecond-laser induced stress changes in optical fibers,” Appl. Phys. Lett. 84(24), 4983–4985 (2004).
[CrossRef]

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Comparison of one-photon and two-photon effects in the photosensitivity of germanium-doped silica optical fibers exposed to intense ArF excimer laser pulses,” Appl. Phys. Lett. 67(24), 3529–3531 (1995).
[CrossRef]

Electron. Lett.

B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, and S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fiber exposed to high fluence ArF excimer-laser light,” Electron. Lett. 31(11), 879–880 (1995).
[CrossRef]

H. G. Limberger and G. Violakis, “Formation of Bragg gratings in pristine SMF-28e fibre using cw 244-nm Ar+-laser,” Electron. Lett. 46(5), 363–365 (2010).
[CrossRef]

Fusion Eng. Des.

K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, and M. Nakatsuka, “Bi-doped SiO2 as a new laser material for an intense laser,” Fusion Eng. Des. 44(1-4), 437–439 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[CrossRef]

J. Appl. Phys.

W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30(5), 779–788 (1959).
[CrossRef]

J. Lightwave Technol.

I. Riant and F. Haller, “Study of the Photosensitivity at 193 nm and Comparison with Photosensitivity at 240 nm Influence of Fiber Tension: Type IIA Aging,” J. Lightwave Technol. 15(8), 1464–1469 (1997).
[CrossRef]

J. Phys. D

Z. Yang, Q. Zhang, and Z. Jiang, “Photo-induced refractive index change of bismuth-based silicate glass,” J. Phys. D 38(9), 1461–1463 (2005).
[CrossRef]

Jpn. J. Appl. Phys. Part 2

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. Part 2 40(3B), 279–281 (2001).

Opt. Express

Opt. Lett.

Quantum Electron.

E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

Other

C. Ban, H. G. Limberger, V. M. Mashinsky, V. V. Dvoyrin, L. I. Bulatov, and E. M. Dianov, “ArF excimer laser induced refractive index changes in Bi-Al-doped silica optical fiber,” in LPHYS'08: 17th International Laser Physics workshop, 2008).

C. Ban, H. G. Limberger, V. M. Mashinsky, V. V. Dvoyrin, L. I. Bulatov, and E. M. Dianov, “Photosensitivity of Bi-Al-doped silica optical fibers to 193 nm excimer laser irradiation,” in 3rd European Physical Society - Quantum Electronics and Optics Division Europhoton Conference on “Solid-state and fiber coherent light sources” (2008).

C. Ban, H. G. Limberger, V. Mashinsky, V. Dvoyrin, and E. Dianov, “UV-Photosensitivity of Germanium-free Bi-Al Silica Fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides BGPP: OSA Topical Meeting, (OSA, 2010), BWD3.

T. Haruna, M. Kakui, T. Taru, S. Ishikawa, and M. Onishi, “Silica-based bismuth-doped fiber for ultrabroad band light-source and optical amplification around 1.1 μm,” in Optical Amplifiers and Their Applications Topical Meeting (OAA), (OSA, 2005), MC3.

V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov, A. A. Umnikov, M. V. Yashkov, and A. N. Guryanov, “Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres,” in ECOC 2005 – 31st European Conference and Exhibition on Optical Communication, (IEE, 2005), Th3.3.5.

F. Dürr, H. G. Limberger, R. P. Salathé, and A. D. Yablon, “Inelastic Strain Birefringence in Optical Fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (OSA 2006) (2006), OWA 2.

F. Dürr, “Laser-Induced Stress Changes in Optical Fibers,” PhD thesis no. 3314 (Swiss Federal Institute of Technology, Lausanne, 2005).

Y. Larionov, A. Rybaltovsky, S. Semjonov, M. Bubnov, E. Dianov, S. Vartapetov, M. Kurzanov, A. Obidin, V. Yamschikov, A. N. Guryanov, M. V. Yashkov, and A. A. Umnikov, “High photosensitivity of Al2O3-doped fibers to 193 nm and 157 nm excimer laser irradiation,” in Bragg Gratings Photosensitivity and Poling in Glass Waveguides, 2003), 46–48.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Mean refractive index change versus dose in (a) pristine (Fp = 160 mJ/cm2) and in (b) H2-loaded Bi-Al-doped fibers (Fp = 135 mJ/cm2). Inset in (a) shows the dependence on exposure for different Fp.

Fig. 2
Fig. 2

Axial stress profiles before (blue) and after UV-irradiation (Δndc = 1.3 × 10−4, red) in pristine Bi-Al silica (a) and in H2-loaded Bi-Al silica fiber (Δndc = 1.2 × 10−3, red) (b).

Tables (2)

Tables Icon

Table 1 Properties of Bismuth Doped Silica Optical Fibers

Tables Icon

Table 2 Photoelastic Constants of Vitreous Silica at 546 nm [29]

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ z ( r )=I( r ) I n
I( r )= 1 πC r R d tot ( y ) / dy y 2 r 2 dy
Δε= ( 1+ν ) E I n
Δ n pe = ( C 1 +3 C 2 )Δ σ z core /2

Metrics