Abstract

Nanophotonic wire waveguides play an important role for the realization of highly dense integrated photonic circuits. The miniaturization of optoelectronic devices and realization of ultra-small integrated circuits strongly demand compact waveguide branches. T-shaped versions of nanophotonic wires are the first stage of both power splitting and optical-interconnection systems based on guided-wave optics; however, the acute transitions at the waveguide junctions typically induce huge bending losses in terms of radiated modes. Both 2D and 3D finite-difference time-domain methods are employed to monitor the efficient light propagation. By introducing appropriate combinations of dielectric posts around the dielectric-waveguide junctions within the 4.096μm×4.096μmregion, we are able to reduce the bending losses dramatically and increase the transmission efficiency from low values of 18% in the absence of the dielectric posts to approximately 49% and 43% in 2D and 3D cases, respectively. These findings may lead to the implementation of such T-junctions in near-future high-density integrated photonics to deliver optical-clock signals via H-tree network.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Gamet and G. Pandraud, “Ultralow-loss 1 x 8 splitter based on field matching Y junction,” IEEE Photon. Technol. Lett. 16, 2060–2062 (2004).
    [CrossRef]
  2. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
    [CrossRef]
  3. D. R. Lim, B. E. Little, K. K. Lee, M. Morse, H. H. Fujimoto, H. A. Haus, and L. C. Kimerling, “Micro-sized channel dropping filters using silicon waveguide devices,” Proc. SPIE 3847, 65–71 (1999).
    [CrossRef]
  4. T. Fujisawa and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide couplers,” J. Opt. Soc. Am. B 23(4), 684–691 (2006).
    [CrossRef]
  5. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
    [CrossRef]
  6. C. A. Barrios, “High-performance all-optical silicon microswitch,” Electron. Lett. 40(14), 862–863 (2004).
    [CrossRef]
  7. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004).
  8. S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 x 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express 16(26), 21456–21461 (2008).
    [CrossRef] [PubMed]
  9. B. Chen, T. Tang, and H. Chen, “Study on a compact flexible photonic crystal waveguide and its bends,” Opt. Express 17(7), 5033–5038 (2009).
    [CrossRef] [PubMed]
  10. Y. Zhang and B. Li, “Photonic crystal-based bending waveguides for optical interconnections,” Opt. Express 14(12), 5723–5732 (2006).
    [CrossRef] [PubMed]
  11. B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett. 93(18), 181107 (2008).
    [CrossRef]
  12. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [CrossRef]
  13. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
    [CrossRef]
  14. Y. A. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [CrossRef] [PubMed]
  15. M. Popovic, K. Wada, S. Akiyama, H. A. Haus, and J. Michel, “Air trenches for sharp silica waveguide bends,” J. Lightwave Technol. 20(9), 1762–1772 (2002).
    [CrossRef]
  16. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17(9), 1682–1692 (1999).
    [CrossRef]
  17. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  18. G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
    [CrossRef] [PubMed]
  19. J. S. Jensen and O. Sigmund, “Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B 22(6), 1191–1198 (2005).
    [CrossRef]
  20. L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach (Springer, 2006).
  21. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
    [CrossRef] [PubMed]
  22. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501–096557 (2010).
    [CrossRef]
  23. H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43(1), 78–84 (2007).
    [CrossRef]
  24. H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13(25), 10316–10326 (2005).
    [CrossRef] [PubMed]
  25. A. Martinez, J. Garcia, G. Sanchez, and J. Marti, “Planar photonic crystal structure with inherently single-mode waveguides,” J. Opt. Soc. Am. A 20(11), 2131–2136 (2003).
    [CrossRef] [PubMed]
  26. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  27. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
    [CrossRef]
  28. H. Kurt, I. H. Giden, and K. Ustun, “Highly efficient and broadband light transmission in 90° nano-photonic wire waveguide bends,” J. Opt. Soc. Am. B 28(3), 495–501 (2011).
    [CrossRef]
  29. Z. Sheng, D. Dai, and S. He, “Comparative Study of Losses in Ultrasharp Silicon-on-Insulator Nanowire Bends,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1406–1412 (2009).
    [CrossRef]
  30. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
    [CrossRef]
  31. G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
    [CrossRef]
  32. H. Kurt and D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett. 19(19), 1532–1534 (2007).
    [CrossRef]
  33. O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105(10), 103708 (2009).
    [CrossRef]
  34. T. Fukazawa, A. Sakai, and T. Baba, “H-tree-type optical clock signal distribution circuit using a Si photonic wire waveguide,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1461–L1463 (2002).
    [CrossRef]

2011 (2)

G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[CrossRef]

H. Kurt, I. H. Giden, and K. Ustun, “Highly efficient and broadband light transmission in 90° nano-photonic wire waveguide bends,” J. Opt. Soc. Am. B 28(3), 495–501 (2011).
[CrossRef]

2010 (1)

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501–096557 (2010).
[CrossRef]

2009 (3)

O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105(10), 103708 (2009).
[CrossRef]

Z. Sheng, D. Dai, and S. He, “Comparative Study of Losses in Ultrasharp Silicon-on-Insulator Nanowire Bends,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1406–1412 (2009).
[CrossRef]

B. Chen, T. Tang, and H. Chen, “Study on a compact flexible photonic crystal waveguide and its bends,” Opt. Express 17(7), 5033–5038 (2009).
[CrossRef] [PubMed]

2008 (2)

S. H. Tao, Q. Fang, J. F. Song, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Cascade wide-angle Y-junction 1 x 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator,” Opt. Express 16(26), 21456–21461 (2008).
[CrossRef] [PubMed]

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett. 93(18), 181107 (2008).
[CrossRef]

2007 (2)

H. Kurt and D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett. 19(19), 1532–1534 (2007).
[CrossRef]

H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43(1), 78–84 (2007).
[CrossRef]

2006 (4)

2005 (3)

2004 (5)

Y. A. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[CrossRef] [PubMed]

C. A. Barrios, “High-performance all-optical silicon microswitch,” Electron. Lett. 40(14), 862–863 (2004).
[CrossRef]

J. Gamet and G. Pandraud, “Ultralow-loss 1 x 8 splitter based on field matching Y junction,” IEEE Photon. Technol. Lett. 16, 2060–2062 (2004).
[CrossRef]

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[CrossRef] [PubMed]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

2003 (1)

2002 (2)

M. Popovic, K. Wada, S. Akiyama, H. A. Haus, and J. Michel, “Air trenches for sharp silica waveguide bends,” J. Lightwave Technol. 20(9), 1762–1772 (2002).
[CrossRef]

T. Fukazawa, A. Sakai, and T. Baba, “H-tree-type optical clock signal distribution circuit using a Si photonic wire waveguide,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1461–L1463 (2002).
[CrossRef]

1999 (3)

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17(9), 1682–1692 (1999).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

D. R. Lim, B. E. Little, K. K. Lee, M. Morse, H. H. Fujimoto, H. A. Haus, and L. C. Kimerling, “Micro-sized channel dropping filters using silicon waveguide devices,” Proc. SPIE 3847, 65–71 (1999).
[CrossRef]

1998 (1)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

Akiyama, S.

Baba, T.

T. Fukazawa, A. Sakai, and T. Baba, “H-tree-type optical clock signal distribution circuit using a Si photonic wire waveguide,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1461–L1463 (2002).
[CrossRef]

Baets, R.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Baets, R. G.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Barrios, C. A.

C. A. Barrios, “High-performance all-optical silicon microswitch,” Electron. Lett. 40(14), 862–863 (2004).
[CrossRef]

Beckx, S.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

Bettiol, A. A.

G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[CrossRef]

Bienstman, P.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Bogaerts, W.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Caglayan, H.

O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105(10), 103708 (2009).
[CrossRef]

Cakmak, O.

O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105(10), 103708 (2009).
[CrossRef]

Chen, B.

B. Chen, T. Tang, and H. Chen, “Study on a compact flexible photonic crystal waveguide and its bends,” Opt. Express 17(7), 5033–5038 (2009).
[CrossRef] [PubMed]

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett. 93(18), 181107 (2008).
[CrossRef]

Chen, H.

B. Chen, T. Tang, and H. Chen, “Study on a compact flexible photonic crystal waveguide and its bends,” Opt. Express 17(7), 5033–5038 (2009).
[CrossRef] [PubMed]

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett. 93(18), 181107 (2008).
[CrossRef]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Chu, S. T.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Citrin, D. S.

H. Kurt and D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett. 19(19), 1532–1534 (2007).
[CrossRef]

H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43(1), 78–84 (2007).
[CrossRef]

H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13(25), 10316–10326 (2005).
[CrossRef] [PubMed]

Colak, E.

O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105(10), 103708 (2009).
[CrossRef]

Dai, D.

Z. Sheng, D. Dai, and S. He, “Comparative Study of Losses in Ultrasharp Silicon-on-Insulator Nanowire Bends,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1406–1412 (2009).
[CrossRef]

Danner, A. J.

G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[CrossRef]

Dumon, P.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Fan, S.

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17(9), 1682–1692 (1999).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Fang, Q.

Fathpour, S.

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Fujimoto, H. H.

D. R. Lim, B. E. Little, K. K. Lee, M. Morse, H. H. Fujimoto, H. A. Haus, and L. C. Kimerling, “Micro-sized channel dropping filters using silicon waveguide devices,” Proc. SPIE 3847, 65–71 (1999).
[CrossRef]

Fujisawa, T.

Fukazawa, T.

T. Fukazawa, A. Sakai, and T. Baba, “H-tree-type optical clock signal distribution circuit using a Si photonic wire waveguide,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1461–L1463 (2002).
[CrossRef]

Gamet, J.

J. Gamet and G. Pandraud, “Ultralow-loss 1 x 8 splitter based on field matching Y junction,” IEEE Photon. Technol. Lett. 16, 2060–2062 (2004).
[CrossRef]

Garcia, J.

Giden, I. H.

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Haus, H. A.

M. Popovic, K. Wada, S. Akiyama, H. A. Haus, and J. Michel, “Air trenches for sharp silica waveguide bends,” J. Lightwave Technol. 20(9), 1762–1772 (2002).
[CrossRef]

D. R. Lim, B. E. Little, K. K. Lee, M. Morse, H. H. Fujimoto, H. A. Haus, and L. C. Kimerling, “Micro-sized channel dropping filters using silicon waveguide devices,” Proc. SPIE 3847, 65–71 (1999).
[CrossRef]

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17(9), 1682–1692 (1999).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

He, S.

Z. Sheng, D. Dai, and S. He, “Comparative Study of Losses in Ultrasharp Silicon-on-Insulator Nanowire Bends,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1406–1412 (2009).
[CrossRef]

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Jaenen, P.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Jalali, B.

Jensen, J. S.

Joannopoulos, J. D.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17(9), 1682–1692 (1999).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Johnson, S. G.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17(9), 1682–1692 (1999).
[CrossRef]

Kimerling, L. C.

D. R. Lim, B. E. Little, K. K. Lee, M. Morse, H. H. Fujimoto, H. A. Haus, and L. C. Kimerling, “Micro-sized channel dropping filters using silicon waveguide devices,” Proc. SPIE 3847, 65–71 (1999).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Kolodziejski, L.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Koshiba, M.

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Kurt, H.

H. Kurt, I. H. Giden, and K. Ustun, “Highly efficient and broadband light transmission in 90° nano-photonic wire waveguide bends,” J. Opt. Soc. Am. B 28(3), 495–501 (2011).
[CrossRef]

O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105(10), 103708 (2009).
[CrossRef]

H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43(1), 78–84 (2007).
[CrossRef]

H. Kurt and D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett. 19(19), 1532–1534 (2007).
[CrossRef]

H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13(25), 10316–10326 (2005).
[CrossRef] [PubMed]

Kwong, D. L.

Lang Teo, S.

G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[CrossRef]

Lee, K. K.

D. R. Lim, B. E. Little, K. K. Lee, M. Morse, H. H. Fujimoto, H. A. Haus, and L. C. Kimerling, “Micro-sized channel dropping filters using silicon waveguide devices,” Proc. SPIE 3847, 65–71 (1999).
[CrossRef]

Li, B.

Lim, D. R.

D. R. Lim, B. E. Little, K. K. Lee, M. Morse, H. H. Fujimoto, H. A. Haus, and L. C. Kimerling, “Micro-sized channel dropping filters using silicon waveguide devices,” Proc. SPIE 3847, 65–71 (1999).
[CrossRef]

Little, B. E.

D. R. Lim, B. E. Little, K. K. Lee, M. Morse, H. H. Fujimoto, H. A. Haus, and L. C. Kimerling, “Micro-sized channel dropping filters using silicon waveguide devices,” Proc. SPIE 3847, 65–71 (1999).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Liu, Z.

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett. 93(18), 181107 (2008).
[CrossRef]

Lo, G. Q.

Luyssaert, B.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Manolatou, C.

Marti, J.

Martinez, A.

McNab, S.

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Michel, J.

Morse, M.

D. R. Lim, B. E. Little, K. K. Lee, M. Morse, H. H. Fujimoto, H. A. Haus, and L. C. Kimerling, “Micro-sized channel dropping filters using silicon waveguide devices,” Proc. SPIE 3847, 65–71 (1999).
[CrossRef]

Notomi, M.

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501–096557 (2010).
[CrossRef]

Ozbay, E.

O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105(10), 103708 (2009).
[CrossRef]

Pandraud, G.

J. Gamet and G. Pandraud, “Ultralow-loss 1 x 8 splitter based on field matching Y junction,” IEEE Photon. Technol. Lett. 16, 2060–2062 (2004).
[CrossRef]

Popovic, M.

Reed, G. T.

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[CrossRef] [PubMed]

Sakai, A.

T. Fukazawa, A. Sakai, and T. Baba, “H-tree-type optical clock signal distribution circuit using a Si photonic wire waveguide,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1461–L1463 (2002).
[CrossRef]

Sanchez, G.

Sheng, Z.

Z. Sheng, D. Dai, and S. He, “Comparative Study of Losses in Ultrasharp Silicon-on-Insulator Nanowire Bends,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1406–1412 (2009).
[CrossRef]

Si, G.

G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[CrossRef]

Sigmund, O.

Song, J. F.

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Taillaert, D.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Tang, T.

B. Chen, T. Tang, and H. Chen, “Study on a compact flexible photonic crystal waveguide and its bends,” Opt. Express 17(7), 5033–5038 (2009).
[CrossRef] [PubMed]

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett. 93(18), 181107 (2008).
[CrossRef]

Tao, S. H.

Teng, J.

G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[CrossRef]

Teo, E. J.

G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[CrossRef]

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Thourhout, D. V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Ustun, K.

Van Campenhout, J.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Van Thourhout, D.

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17(9), 1682–1692 (1999).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Vlasov, Y. A.

Wada, K.

Wang, Z.

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett. 93(18), 181107 (2008).
[CrossRef]

Wiaux, V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Wouters, J.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Yu, M. B.

Zhang, Y.

Appl. Phys. Lett. (1)

B. Chen, T. Tang, Z. Wang, H. Chen, and Z. Liu, “Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals,” Appl. Phys. Lett. 93(18), 181107 (2008).
[CrossRef]

Electron. Lett. (1)

C. A. Barrios, “High-performance all-optical silicon microswitch,” Electron. Lett. 40(14), 862–863 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43(1), 78–84 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

Z. Sheng, D. Dai, and S. He, “Comparative Study of Losses in Ultrasharp Silicon-on-Insulator Nanowire Bends,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1406–1412 (2009).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. Gamet and G. Pandraud, “Ultralow-loss 1 x 8 splitter based on field matching Y junction,” IEEE Photon. Technol. Lett. 16, 2060–2062 (2004).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

H. Kurt and D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett. 19(19), 1532–1534 (2007).
[CrossRef]

J. Appl. Phys. (1)

O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, “High efficiency of graded index photonic crystal as an input coupler,” J. Appl. Phys. 105(10), 103708 (2009).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

J. Vac. Sci. Technol. B (1)

G. Si, A. J. Danner, S. Lang Teo, E. J. Teo, J. Teng, and A. A. Bettiol, “Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling,” J. Vac. Sci. Technol. B 29(2), 021205 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Fukazawa, A. Sakai, and T. Baba, “H-tree-type optical clock signal distribution circuit using a Si photonic wire waveguide,” Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1461–L1463 (2002).
[CrossRef]

Nature (1)

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[CrossRef] [PubMed]

Opt. Express (5)

Phys. Rev. B (1)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77(18), 3787–3790 (1996).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. R. Lim, B. E. Little, K. K. Lee, M. Morse, H. H. Fujimoto, H. A. Haus, and L. C. Kimerling, “Micro-sized channel dropping filters using silicon waveguide devices,” Proc. SPIE 3847, 65–71 (1999).
[CrossRef]

Rep. Prog. Phys. (1)

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501–096557 (2010).
[CrossRef]

Other (3)

L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach (Springer, 2006).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004).

Supplementary Material (1)

» Media 1: AVI (458 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic drawing of the T-junction nanophotonic wire dielectric waveguide is shown. The width and refractive index of the dielectric slab (w) is 0.20a and 3.46, respectively. The equally divided input light pulse is shown in the branches. The arrows indicate the direction of the signal flow.

Fig. 2
Fig. 2

The power transmission spectra of three cases are shown. A regular T-junction nanowire dielectric waveguide corresponds to solid-black line. The dashed-green line represents the transmission efficiency of the structure whose schematic drawing is presented in Fig. 4. The T-junction nanowire dielectric waveguide is surrounded by photonic crystal that is composed of dielectric rods with radii, r = 0.20a. The dotted-red line corresponds to the power transmission efficiency spectrum for the case in which r 1 and r 2 are adjusted to be 0.18a and 0.26a, respectively. The structure in this case is presented in Fig. 5.

Fig. 3
Fig. 3

Steady-state electric field (Ez) distribution of TM mode for the regular T-junction nanowire waveguide when the operating frequency is centered at λ=1.55μm . The red and blue colors represent the maximum and minimum electric-field values, respectively.

Fig. 4
Fig. 4

Schematic of T-junction nanowire dielectric waveguide surrounded by square-lattice photonic crystal that is composed of dielectric rods with radii, r = 0.20a. The box shows the boundary of the region that is engineered to enhance transmission efficiency. It covers an area of (8ax8a = 4.096μm× 4.096μm ).

Fig. 5
Fig. 5

Schematic drawing of the modified hybrid T-junction. In the first step, two additional cylinders represented by “A” are embedded along the diagonal direction. In the next attempt, the radii of the cylinder pointed with arrows are arranged in order to enhance the transmission of the light-wave. Finally, (δx, δy) describes the cylinders movement along the diagonal direction. δx and δy values are selected with the equal amount to stay on the diagonal direction.

Fig. 6
Fig. 6

Steady-state electric field (Ez) distribution of TM modes for the hybrid structure when the operating frequency is centered at a/λ = 0.33. The red and blue colors represent the positive and negative electric fields, respectively. The arrows indicate the propagation directions.

Fig. 7
Fig. 7

The three-dimensional representation of the T-junction is shown.

Fig. 8
Fig. 8

The power transmission efficiency spectrum for the optimized 3D structure is shown with a solid-blue line. The dashed-red line indicates the efficiency curve obtained by 2D FDTD method.

Fig. 9
Fig. 9

The schematic presentation of the 1x4 optical signal distribution in H-tree network.

Fig. 10
Fig. 10

The transmission efficiency of 1x4 optical signal distribution in H-tree network.

Fig. 11
Fig. 11

The steady-state e-field distribution of the input signal in H-tree network is shown. T1 and T2 correspond to transmitted powers at the junctions (Media 1).

Metrics