Abstract

Fluorometers are widely used in ecosystem observing to monitor fluorescence signals from organic compounds, as well as to infer geophysical parameters such as chlorophyll or CDOM concentration, but measurements are susceptible to variation caused by biofouling, instrument design, sensor drift, operating environment, and calibration rigor. To collect high quality data, such sensors need frequent checking and regular calibration. In this study, a wide variety of both liquid and solid fluorescent materials were trialed to assess their suitability as reference standards for performance assessment of in situ fluorometers. Criteria used to evaluate the standards included the spectral excitation/emission responses of the materials relative to fluorescence sensors and to targeted ocean properties, the linearity of the fluorometer’s optical response with increasing concentration, stability and consistency, availability and ease of use, as well as cost. Findings are summarized as a series of recommended reference standards for sensors deployed on stationary and mobile platforms, to suit a variety of in situ coastal to ocean sensor configurations. Repeated determinations of chlorophyll scale factor using the recommended liquid standard, Fluorescein, achieved an accuracy of 2.5%. Repeated measurements with the recommended solid standard, Plexiglas Satinice® plum 4H01 DC (polymethylmethacrylate), over an 18 day period varied from the mean value by 1.0% for chlorophyll sensors and 3.3% for CDOM sensors.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Mobley, “Optical properties of water,” in Handbook of Optics, M. Bass, ed. (The McGraw-Hill Companies, Inc., 2010), 1.3 - 1.50.
  2. J. T. O. Kirk, Light and photosynthesis in aquatic ecosystems (Cambridge University Press, Melbourne, 1994).
  3. P. G. Coble, “Marine optical biogeochemistry: the chemistry of ocean color,” Chem. Rev. 107(2), 402–418 (2007).
    [CrossRef] [PubMed]
  4. S. M. Glenn, T. D. Dickey, B. Parker, and W. Boicourt, “Long-term real-time coastal ocean observation networks,” Oceanogr. 13, 24–34 (2000).
  5. T. D. Dickey, “Emerging ocean observations for interdisciplinary data assimilation systems,” J. Mar. Syst. 40–41, 5–48 (2003).
    [CrossRef]
  6. I. Cetinic, G. Toro-Farmer, M. Ragan, C. Oberg, and B. H. Jones, “Calibration procedure for Slocum glider deployed optical instruments,” Opt. Express 17(18), 15420–15430 (2009).
    [CrossRef] [PubMed]
  7. M. J. Perry, B. S. Sackmann, C. C. Eriksen, and C. M. Lee, “Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast,” Limnol. Oceanogr. 53(5_part_2), 2169–2179 (2008).
    [CrossRef]
  8. M. E. Baird, I. M. Suthers, D. A. Griffin, B. Hollings, C. Pattiaratchi, J. D. Everett, M. Roughan, K. Oubelkheir, and M. A. Doblin, “The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia,” Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 592–605 (2011).
  9. K. Hill, T. Moltmann, R. Proctor, and S. Allen, “The Australian integrated marine observing dystem: delivering data streams to address national and international research priorities,” Mar. Technol. Soc. J. 44(6), 65–72 (2010).
    [CrossRef]
  10. ACT, “Applications of in situ fluorometers in nearshore waters,” Workshop report,Alliance for Coastal Technologies, Cape Elizabeth, Maine, USA, (2005), pp. 32.
  11. ACT, “Protocols for verifying the performance of in situ chlorophyll fluorometers,” Evaluation report, Alliance for Coastal Technologies, Solomons, Maryland, USA, (2005), pp. 31.
  12. C. Belzile, C. S. Roesler, J. P. Christensen, N. Shakhova, and I. Semiletov, “Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption,” Estuar. Coast. Shelf Sci. 67(3), 441–449 (2006).
    [CrossRef]
  13. I. D. Walsh, (personal communication, 2009).
  14. S. W. Jeffrey and G. F. Humphrey, “New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Biochem. Physiol. Pflanz. 167, 191–194 (1975).
  15. S. W. Jeffrey, R. F. C. Mantoura, and S. W. Wright, eds., Phytoplankton pigments in oceanography: Guidelines to modern methods (UNESCO, Paris, 1996).
  16. P. G. Falkowski and J. A. Raven, “Aquatic Photosynthesis,” (Blackwell Science, Massachusetts, USA, 1997), pp 375.
  17. J. W. Hofstraat and M. J. Latuhihin, “Correction of fluorescence spectra,” Appl. Spectrosc. 48(4), 436–447 (1994).
    [CrossRef]
  18. ACT, “Performance Verification Statement for the Wet Labs ECO FLNTUSB Fluorometer,” ACT VS07–06, M. N. Tamburri, ed. (Alliance for Coastal Technologies, 2006).
  19. K. R. Murphy, K. D. Butler, R. G. M. Spencer, C. A. Stedmon, J. R. Boehme, and G. R. Aiken, “Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison,” Environ. Sci. Technol. 44(24), 9405–9412 (2010).
    [CrossRef] [PubMed]
  20. I. Cetinic, G. Toro-Farmer, M. Ragan, C. Oberg, and B. H. Jones, “Calibration procedure for Slocum glider deployed optical instruments,” Opt. Express 17(18), 15420–15430 (2009).
    [CrossRef] [PubMed]
  21. U. Kopf and J. Heinze, “2,7-Bis(diethylamino)phenazoxonium chloride as a quantum counter for emission measurements between 240 and 700 nm,” Anal. Chem. 56(11), 1931–1935 (1984).
    [CrossRef]
  22. J. Downing, “Twenty-five years with OBS sensors: The good, the bad, and the ugly,” Cont. Shelf Res. 26(17-18), 2299–2318 (2006).
    [CrossRef]
  23. D. V. Manov, G. C. Chang, and T. D. Dickey, “Methods for Reducing Biofouling of Moored Optical Sensors,” J. Atmos. Ocean. Technol. 21(6), 958–968 (2004).
    [CrossRef]
  24. “Avian Technologies Fluroescent Standards,” http://www.aviantechnologies.com/products/standards/fluorescence.php , Accessed 26th May, 2011.
  25. “Evonik Industries Plexiglas Products,” http://www.plexiglas.de/product/plexiglas/en/Pages/default.aspx .
  26. “BASF Lumogen (R) Pigment Product Information,” http://worldaccount.basf.com/wa/EU~en_GB/Catalog/Pigments/pi/BASF/range/pl_col_dyes_lumogen_f .
  27. G. B. Smith, J. C. Jonsson, and J. Franklin, “Spectral and global diffuse properties of high-performance translucent polymer sheets for energy efficient lighting and skylights,” Appl. Opt. 42(19), 3981–3991 (2003).
    [CrossRef] [PubMed]
  28. J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
    [CrossRef]

2011 (1)

M. E. Baird, I. M. Suthers, D. A. Griffin, B. Hollings, C. Pattiaratchi, J. D. Everett, M. Roughan, K. Oubelkheir, and M. A. Doblin, “The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia,” Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 592–605 (2011).

2010 (2)

K. Hill, T. Moltmann, R. Proctor, and S. Allen, “The Australian integrated marine observing dystem: delivering data streams to address national and international research priorities,” Mar. Technol. Soc. J. 44(6), 65–72 (2010).
[CrossRef]

K. R. Murphy, K. D. Butler, R. G. M. Spencer, C. A. Stedmon, J. R. Boehme, and G. R. Aiken, “Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison,” Environ. Sci. Technol. 44(24), 9405–9412 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[CrossRef]

M. J. Perry, B. S. Sackmann, C. C. Eriksen, and C. M. Lee, “Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast,” Limnol. Oceanogr. 53(5_part_2), 2169–2179 (2008).
[CrossRef]

2007 (1)

P. G. Coble, “Marine optical biogeochemistry: the chemistry of ocean color,” Chem. Rev. 107(2), 402–418 (2007).
[CrossRef] [PubMed]

2006 (2)

C. Belzile, C. S. Roesler, J. P. Christensen, N. Shakhova, and I. Semiletov, “Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption,” Estuar. Coast. Shelf Sci. 67(3), 441–449 (2006).
[CrossRef]

J. Downing, “Twenty-five years with OBS sensors: The good, the bad, and the ugly,” Cont. Shelf Res. 26(17-18), 2299–2318 (2006).
[CrossRef]

2004 (1)

D. V. Manov, G. C. Chang, and T. D. Dickey, “Methods for Reducing Biofouling of Moored Optical Sensors,” J. Atmos. Ocean. Technol. 21(6), 958–968 (2004).
[CrossRef]

2003 (2)

2000 (1)

S. M. Glenn, T. D. Dickey, B. Parker, and W. Boicourt, “Long-term real-time coastal ocean observation networks,” Oceanogr. 13, 24–34 (2000).

1994 (1)

1984 (1)

U. Kopf and J. Heinze, “2,7-Bis(diethylamino)phenazoxonium chloride as a quantum counter for emission measurements between 240 and 700 nm,” Anal. Chem. 56(11), 1931–1935 (1984).
[CrossRef]

1975 (1)

S. W. Jeffrey and G. F. Humphrey, “New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Biochem. Physiol. Pflanz. 167, 191–194 (1975).

Aiken, G. R.

K. R. Murphy, K. D. Butler, R. G. M. Spencer, C. A. Stedmon, J. R. Boehme, and G. R. Aiken, “Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison,” Environ. Sci. Technol. 44(24), 9405–9412 (2010).
[CrossRef] [PubMed]

Allen, S.

K. Hill, T. Moltmann, R. Proctor, and S. Allen, “The Australian integrated marine observing dystem: delivering data streams to address national and international research priorities,” Mar. Technol. Soc. J. 44(6), 65–72 (2010).
[CrossRef]

Baird, M. E.

M. E. Baird, I. M. Suthers, D. A. Griffin, B. Hollings, C. Pattiaratchi, J. D. Everett, M. Roughan, K. Oubelkheir, and M. A. Doblin, “The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia,” Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 592–605 (2011).

Belzile, C.

C. Belzile, C. S. Roesler, J. P. Christensen, N. Shakhova, and I. Semiletov, “Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption,” Estuar. Coast. Shelf Sci. 67(3), 441–449 (2006).
[CrossRef]

Boehme, J. R.

K. R. Murphy, K. D. Butler, R. G. M. Spencer, C. A. Stedmon, J. R. Boehme, and G. R. Aiken, “Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison,” Environ. Sci. Technol. 44(24), 9405–9412 (2010).
[CrossRef] [PubMed]

Boicourt, W.

S. M. Glenn, T. D. Dickey, B. Parker, and W. Boicourt, “Long-term real-time coastal ocean observation networks,” Oceanogr. 13, 24–34 (2000).

Butler, K. D.

K. R. Murphy, K. D. Butler, R. G. M. Spencer, C. A. Stedmon, J. R. Boehme, and G. R. Aiken, “Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison,” Environ. Sci. Technol. 44(24), 9405–9412 (2010).
[CrossRef] [PubMed]

Cetinic, I.

Chang, G. C.

D. V. Manov, G. C. Chang, and T. D. Dickey, “Methods for Reducing Biofouling of Moored Optical Sensors,” J. Atmos. Ocean. Technol. 21(6), 958–968 (2004).
[CrossRef]

Christensen, J. P.

C. Belzile, C. S. Roesler, J. P. Christensen, N. Shakhova, and I. Semiletov, “Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption,” Estuar. Coast. Shelf Sci. 67(3), 441–449 (2006).
[CrossRef]

Coble, P. G.

P. G. Coble, “Marine optical biogeochemistry: the chemistry of ocean color,” Chem. Rev. 107(2), 402–418 (2007).
[CrossRef] [PubMed]

Dickey, T. D.

D. V. Manov, G. C. Chang, and T. D. Dickey, “Methods for Reducing Biofouling of Moored Optical Sensors,” J. Atmos. Ocean. Technol. 21(6), 958–968 (2004).
[CrossRef]

T. D. Dickey, “Emerging ocean observations for interdisciplinary data assimilation systems,” J. Mar. Syst. 40–41, 5–48 (2003).
[CrossRef]

S. M. Glenn, T. D. Dickey, B. Parker, and W. Boicourt, “Long-term real-time coastal ocean observation networks,” Oceanogr. 13, 24–34 (2000).

Doblin, M. A.

M. E. Baird, I. M. Suthers, D. A. Griffin, B. Hollings, C. Pattiaratchi, J. D. Everett, M. Roughan, K. Oubelkheir, and M. A. Doblin, “The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia,” Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 592–605 (2011).

Downing, J.

J. Downing, “Twenty-five years with OBS sensors: The good, the bad, and the ugly,” Cont. Shelf Res. 26(17-18), 2299–2318 (2006).
[CrossRef]

Eriksen, C. C.

M. J. Perry, B. S. Sackmann, C. C. Eriksen, and C. M. Lee, “Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast,” Limnol. Oceanogr. 53(5_part_2), 2169–2179 (2008).
[CrossRef]

Everett, J. D.

M. E. Baird, I. M. Suthers, D. A. Griffin, B. Hollings, C. Pattiaratchi, J. D. Everett, M. Roughan, K. Oubelkheir, and M. A. Doblin, “The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia,” Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 592–605 (2011).

Franklin, J.

Glenn, S. M.

S. M. Glenn, T. D. Dickey, B. Parker, and W. Boicourt, “Long-term real-time coastal ocean observation networks,” Oceanogr. 13, 24–34 (2000).

Griffin, D. A.

M. E. Baird, I. M. Suthers, D. A. Griffin, B. Hollings, C. Pattiaratchi, J. D. Everett, M. Roughan, K. Oubelkheir, and M. A. Doblin, “The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia,” Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 592–605 (2011).

Heinze, J.

U. Kopf and J. Heinze, “2,7-Bis(diethylamino)phenazoxonium chloride as a quantum counter for emission measurements between 240 and 700 nm,” Anal. Chem. 56(11), 1931–1935 (1984).
[CrossRef]

Helms, J. R.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[CrossRef]

Hill, K.

K. Hill, T. Moltmann, R. Proctor, and S. Allen, “The Australian integrated marine observing dystem: delivering data streams to address national and international research priorities,” Mar. Technol. Soc. J. 44(6), 65–72 (2010).
[CrossRef]

Hofstraat, J. W.

Hollings, B.

M. E. Baird, I. M. Suthers, D. A. Griffin, B. Hollings, C. Pattiaratchi, J. D. Everett, M. Roughan, K. Oubelkheir, and M. A. Doblin, “The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia,” Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 592–605 (2011).

Humphrey, G. F.

S. W. Jeffrey and G. F. Humphrey, “New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Biochem. Physiol. Pflanz. 167, 191–194 (1975).

Jeffrey, S. W.

S. W. Jeffrey and G. F. Humphrey, “New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Biochem. Physiol. Pflanz. 167, 191–194 (1975).

Jones, B. H.

Jonsson, J. C.

Kieber, D. J.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[CrossRef]

Kopf, U.

U. Kopf and J. Heinze, “2,7-Bis(diethylamino)phenazoxonium chloride as a quantum counter for emission measurements between 240 and 700 nm,” Anal. Chem. 56(11), 1931–1935 (1984).
[CrossRef]

Latuhihin, M. J.

Lee, C. M.

M. J. Perry, B. S. Sackmann, C. C. Eriksen, and C. M. Lee, “Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast,” Limnol. Oceanogr. 53(5_part_2), 2169–2179 (2008).
[CrossRef]

Manov, D. V.

D. V. Manov, G. C. Chang, and T. D. Dickey, “Methods for Reducing Biofouling of Moored Optical Sensors,” J. Atmos. Ocean. Technol. 21(6), 958–968 (2004).
[CrossRef]

Minor, E. C.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[CrossRef]

Moltmann, T.

K. Hill, T. Moltmann, R. Proctor, and S. Allen, “The Australian integrated marine observing dystem: delivering data streams to address national and international research priorities,” Mar. Technol. Soc. J. 44(6), 65–72 (2010).
[CrossRef]

Mopper, K.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[CrossRef]

Murphy, K. R.

K. R. Murphy, K. D. Butler, R. G. M. Spencer, C. A. Stedmon, J. R. Boehme, and G. R. Aiken, “Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison,” Environ. Sci. Technol. 44(24), 9405–9412 (2010).
[CrossRef] [PubMed]

Oberg, C.

Oubelkheir, K.

M. E. Baird, I. M. Suthers, D. A. Griffin, B. Hollings, C. Pattiaratchi, J. D. Everett, M. Roughan, K. Oubelkheir, and M. A. Doblin, “The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia,” Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 592–605 (2011).

Parker, B.

S. M. Glenn, T. D. Dickey, B. Parker, and W. Boicourt, “Long-term real-time coastal ocean observation networks,” Oceanogr. 13, 24–34 (2000).

Pattiaratchi, C.

M. E. Baird, I. M. Suthers, D. A. Griffin, B. Hollings, C. Pattiaratchi, J. D. Everett, M. Roughan, K. Oubelkheir, and M. A. Doblin, “The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia,” Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 592–605 (2011).

Perry, M. J.

M. J. Perry, B. S. Sackmann, C. C. Eriksen, and C. M. Lee, “Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast,” Limnol. Oceanogr. 53(5_part_2), 2169–2179 (2008).
[CrossRef]

Proctor, R.

K. Hill, T. Moltmann, R. Proctor, and S. Allen, “The Australian integrated marine observing dystem: delivering data streams to address national and international research priorities,” Mar. Technol. Soc. J. 44(6), 65–72 (2010).
[CrossRef]

Ragan, M.

Ritchie, J. D.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[CrossRef]

Roesler, C. S.

C. Belzile, C. S. Roesler, J. P. Christensen, N. Shakhova, and I. Semiletov, “Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption,” Estuar. Coast. Shelf Sci. 67(3), 441–449 (2006).
[CrossRef]

Roughan, M.

M. E. Baird, I. M. Suthers, D. A. Griffin, B. Hollings, C. Pattiaratchi, J. D. Everett, M. Roughan, K. Oubelkheir, and M. A. Doblin, “The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia,” Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 592–605 (2011).

Sackmann, B. S.

M. J. Perry, B. S. Sackmann, C. C. Eriksen, and C. M. Lee, “Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast,” Limnol. Oceanogr. 53(5_part_2), 2169–2179 (2008).
[CrossRef]

Semiletov, I.

C. Belzile, C. S. Roesler, J. P. Christensen, N. Shakhova, and I. Semiletov, “Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption,” Estuar. Coast. Shelf Sci. 67(3), 441–449 (2006).
[CrossRef]

Shakhova, N.

C. Belzile, C. S. Roesler, J. P. Christensen, N. Shakhova, and I. Semiletov, “Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption,” Estuar. Coast. Shelf Sci. 67(3), 441–449 (2006).
[CrossRef]

Smith, G. B.

Spencer, R. G. M.

K. R. Murphy, K. D. Butler, R. G. M. Spencer, C. A. Stedmon, J. R. Boehme, and G. R. Aiken, “Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison,” Environ. Sci. Technol. 44(24), 9405–9412 (2010).
[CrossRef] [PubMed]

Stedmon, C. A.

K. R. Murphy, K. D. Butler, R. G. M. Spencer, C. A. Stedmon, J. R. Boehme, and G. R. Aiken, “Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison,” Environ. Sci. Technol. 44(24), 9405–9412 (2010).
[CrossRef] [PubMed]

Stubbins, A.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[CrossRef]

Suthers, I. M.

M. E. Baird, I. M. Suthers, D. A. Griffin, B. Hollings, C. Pattiaratchi, J. D. Everett, M. Roughan, K. Oubelkheir, and M. A. Doblin, “The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia,” Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 592–605 (2011).

Toro-Farmer, G.

Anal. Chem. (1)

U. Kopf and J. Heinze, “2,7-Bis(diethylamino)phenazoxonium chloride as a quantum counter for emission measurements between 240 and 700 nm,” Anal. Chem. 56(11), 1931–1935 (1984).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Biochem. Physiol. Pflanz. (1)

S. W. Jeffrey and G. F. Humphrey, “New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton,” Biochem. Physiol. Pflanz. 167, 191–194 (1975).

Chem. Rev. (1)

P. G. Coble, “Marine optical biogeochemistry: the chemistry of ocean color,” Chem. Rev. 107(2), 402–418 (2007).
[CrossRef] [PubMed]

Cont. Shelf Res. (1)

J. Downing, “Twenty-five years with OBS sensors: The good, the bad, and the ugly,” Cont. Shelf Res. 26(17-18), 2299–2318 (2006).
[CrossRef]

Deep Sea Res. Part II Top. Stud. Oceanogr. (1)

M. E. Baird, I. M. Suthers, D. A. Griffin, B. Hollings, C. Pattiaratchi, J. D. Everett, M. Roughan, K. Oubelkheir, and M. A. Doblin, “The effect of surface flooding on the physical-biogeochemical dynamics of a warm-core eddy off southeast Australia,” Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 592–605 (2011).

Environ. Sci. Technol. (1)

K. R. Murphy, K. D. Butler, R. G. M. Spencer, C. A. Stedmon, J. R. Boehme, and G. R. Aiken, “Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison,” Environ. Sci. Technol. 44(24), 9405–9412 (2010).
[CrossRef] [PubMed]

Estuar. Coast. Shelf Sci. (1)

C. Belzile, C. S. Roesler, J. P. Christensen, N. Shakhova, and I. Semiletov, “Fluorescence measured using the WETStar DOM fluorometer as a proxy for dissolved matter absorption,” Estuar. Coast. Shelf Sci. 67(3), 441–449 (2006).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

D. V. Manov, G. C. Chang, and T. D. Dickey, “Methods for Reducing Biofouling of Moored Optical Sensors,” J. Atmos. Ocean. Technol. 21(6), 958–968 (2004).
[CrossRef]

J. Mar. Syst. (1)

T. D. Dickey, “Emerging ocean observations for interdisciplinary data assimilation systems,” J. Mar. Syst. 40–41, 5–48 (2003).
[CrossRef]

Limnol. Oceanogr. (2)

M. J. Perry, B. S. Sackmann, C. C. Eriksen, and C. M. Lee, “Seaglider observations of blooms and subsurface chlorophyll maxima off the Washington coast,” Limnol. Oceanogr. 53(5_part_2), 2169–2179 (2008).
[CrossRef]

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[CrossRef]

Mar. Technol. Soc. J. (1)

K. Hill, T. Moltmann, R. Proctor, and S. Allen, “The Australian integrated marine observing dystem: delivering data streams to address national and international research priorities,” Mar. Technol. Soc. J. 44(6), 65–72 (2010).
[CrossRef]

Oceanogr. (1)

S. M. Glenn, T. D. Dickey, B. Parker, and W. Boicourt, “Long-term real-time coastal ocean observation networks,” Oceanogr. 13, 24–34 (2000).

Opt. Express (2)

Other (11)

I. D. Walsh, (personal communication, 2009).

“Avian Technologies Fluroescent Standards,” http://www.aviantechnologies.com/products/standards/fluorescence.php , Accessed 26th May, 2011.

“Evonik Industries Plexiglas Products,” http://www.plexiglas.de/product/plexiglas/en/Pages/default.aspx .

“BASF Lumogen (R) Pigment Product Information,” http://worldaccount.basf.com/wa/EU~en_GB/Catalog/Pigments/pi/BASF/range/pl_col_dyes_lumogen_f .

ACT, “Performance Verification Statement for the Wet Labs ECO FLNTUSB Fluorometer,” ACT VS07–06, M. N. Tamburri, ed. (Alliance for Coastal Technologies, 2006).

ACT, “Applications of in situ fluorometers in nearshore waters,” Workshop report,Alliance for Coastal Technologies, Cape Elizabeth, Maine, USA, (2005), pp. 32.

ACT, “Protocols for verifying the performance of in situ chlorophyll fluorometers,” Evaluation report, Alliance for Coastal Technologies, Solomons, Maryland, USA, (2005), pp. 31.

S. W. Jeffrey, R. F. C. Mantoura, and S. W. Wright, eds., Phytoplankton pigments in oceanography: Guidelines to modern methods (UNESCO, Paris, 1996).

P. G. Falkowski and J. A. Raven, “Aquatic Photosynthesis,” (Blackwell Science, Massachusetts, USA, 1997), pp 375.

C. D. Mobley, “Optical properties of water,” in Handbook of Optics, M. Bass, ed. (The McGraw-Hill Companies, Inc., 2010), 1.3 - 1.50.

J. T. O. Kirk, Light and photosynthesis in aquatic ecosystems (Cambridge University Press, Melbourne, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Solid performance check mounting bracket for in situ fluorometers Supplied by WET Labs; (a) bracket containing solid fluorescence reference sample (b) bracket mounted on a WET Labs ECOTriplet fluorometer.

Fig. 2
Fig. 2

(color online) Absorption spectra of fluorescent reference dyes used for calibration of Chl-a fluorescence sensors: Fluorescein, Rhodamine WT Red, and Basic Blue 3. Overlaid are the measured relative emission spectra of the excitation source LEDs for CDOM and Chl-a fluorometers on a WET Labs ECOTriplet.

Fig. 3
Fig. 3

(color online) Emission spectra of fluorescent reference dyes used for calibration of Chl-a fluorescence sensors, with 470 nm excitation: Fluorescein, Rhodamine WT Red, and Basic Blue 3. Overlaid are the emission spectra of some marine phytoplankton cultures: Synechococcus sp. Tetraselmis sp. and Nitzschia closterium in seawater and a Chl-a reference standard in acetone. The grey shaded regions indicate the excitation and emission wavebands of a Chl-a sensor (ECOTriplet, WET Labs).

Fig. 4
Fig. 4

(color online) Fluorescence response (λexc = 470nm, λem = 695nm) of WET Labs ECOTriplet Chl-a sensor to increasing concentrations of Fluorescein (squares), Basic Blue 3 (circles) and Rhodamine WT Red (triangles). Scale factors calculated from linear regression (R2 > 0.995) are adjacent to each calibration curve. This sensor saturates when the detected fluorescence reaches 4123 counts.

Fig. 5
Fig. 5

Absorption spectra of CDOM reference samples; Quinine Sulfate Dihydrate (solid line), Sprite Zero (dashed line), Tru Blu tonic water (dot-dashed line). Also shown (dotted line) is the emission spectrum of the excitation LED in the WET Labs ECOTriplet CDOM fluorometer and the arrow indicates that it refers to the right hand axis.

Fig. 6
Fig. 6

Normalised emission spectra of fluorescent reference samples trialed for calibration of CDOM fluorescence sensors with 370 nm excitation: Quinine Sulfate Dihydrate (QSD), Sprite Zero, Tru Blu Tonic Water, Schweppes Diet Indian Tonic Water, and Schweppes Indian Tonic Water. Grey shaded regions represent the excitation (Ex) and emission (Em) wavebands in the ECOTriplet CDOM sensor.

Fig. 7
Fig. 7

Calibration curves demonstrating CDOM fluorescence response of WET Labs ECOTriplet sensor for different tonic water samples including Tru Blu, Schweppes Indian, and Schweppes Diet Indian in milliQ prepared three different ways: 1) 1000μL aliquots added to 2 L of milliQ, 2) Individual solutions made at specific concentrations, 3) Serial dilution of primary standard. Inset shows equivalent curves for quinine sulfate dihydrate (QSD) and Sprite Zero, the only solutions tested that showed linear respones at <0.3% concentration. Scale factors are shown for each sample in concentration units per count, as calculated by linear regression (R2 > 0.995), within the linear region (i.e. >0.3% for tonic water samples).

Fig. 8
Fig. 8

Stability of dye peak absorbance for (a) Fluorescein 0.06 g L−1abs = 493 nm), (b) Basic Blue 3 0.10 g L−1abs = 658 nm). Samples of each dye were treated with three light and temperature conditions: i) Dark 22 °C (diamonds), ii) Lab Bench fluorescent lights 15 μ mol.m−2.s−1 22°C (Squares), iii) Lab bench lights 15 μmol.m−2.s−1 in 27 °C water bath (triangles).

Fig. 9
Fig. 9

Absorption of Fluorescein 0.06 g/L before and after exposure to 15 μΕ fluorescent lights in lab at 22° C. Overlaid with relative emission spectrum of the 470 nm LED source from a WET Labs ECOTriplet Chl-a fluorescence sensor.

Fig. 10
Fig. 10

(color online) Fluorescent emission spectra of solid fluorescent reference materials; (a) Satinice® Plexiglas® samples, CDOM fluorescence (λexc = 370nm), (b) Lumogen, Avian and WET Labs samples, CDOM fluorescence (λexc = 370nm); (c) Satinice® Plexiglas® samples, Chl-a fluorescence (λexc = 470nm); (d) Lumogen, Avian and WET Labs samples, Chl-a fluorescence (λexc = 470 nm). Grey vertical bands indicate excitation and emission wavebands for the WET Labs ECOTriplet fluorometer. Note that due to the large range of fluorescence properties in the samples tested, a logarithmic intensity scale has been applied.

Tables (6)

Tables Icon

Table 1 Absorption and emission wavelength ranges for CDOM (Suwannee River standard fulvic acid in seawater) and Chl-a analytes in organic solvents, and the corresponding excitation and emission wavelengths for the in situ fluorometers used in this study.

Tables Icon

Table 2 Summary of optical properties of solid fluorescence reference samples trialed for performance checks on CDOM and Chl-a fluorescence sensors.

Tables Icon

Table 3 Inter-batch repeatability of fluorescence counts from undiluted Sprite Zero.

Tables Icon

Table 4 Linear functions fitted to repeat Chl-a calibrations of an ECOTriplet with Fluorescein and Basic Blue 3 dyes after exposure to various lighting and temperature conditions.

Tables Icon

Table 5 ECOTriplet Fluorescence counts with various dye doped polymers with rough surfaces (saturation level is 4123 counts on both sensors).

Tables Icon

Table 6 Repeat measurements of fluorescence counts on Chl-a and CDOM fluorescence sensors of an ECOTriplet in situ fluorometer using solid standards Satinice® plum and Satinice® pink, for use as a sensor performance check. Each data value represents the average of three discrete measurements taken by finding the mounting bracket orientation resulting in the maximum fluorescence signal, and recording 30 seconds of data at a rate of 1 Hz. The overall mean of all readings is also listed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α(λ)= ln[ T(λ) ] /x

Metrics