Abstract

We report on the generation of high-energy pulses in an all normal dispersion photonic-crystal fiber laser. Two mode-locking techniques with and without passive spectral filtering are studied both numerically and experimentally to address a roadmap for energy scaling. It is found that high-contrast passive modulation is a very promising mode-locking technique for energy scaling in dissipative-soliton laser. Moreover, this technique does not need any additional spectral filtering than the limited gain bandwidth to stabilize high-energy ultrashort pulses. The presented laser generates 110 nJ chirped pulses at 57 MHz repetition rate for an average power of 6.2 W. The output pulses could be dechirped close to the transform-limited duration of 100 fs.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ortaç, M. Baumgartl, J. Limpert, and A. Tünnermann, “Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers,” Opt. Lett. 34(10), 1585–1587 (2009).
    [CrossRef] [PubMed]
  2. C. Lecaplain, B. Ortaç, and A. Hideur, “High-energy femtosecond pulses from a dissipative soliton fiber laser,” Opt. Lett. 34(23), 3731–3733 (2009).
    [CrossRef] [PubMed]
  3. S. Lefrançois, K. Kieu, Y. Deng, J. D. Kafka, and F. W. Wise, “Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber,” Opt. Lett. 35(10), 1569–1571 (2010).
    [CrossRef] [PubMed]
  4. M. Baumgartl, B. Ortaç, C. Lecaplain, A. Hideur, J. Limpert, and A. Tünnermann, “Sub-80 fs dissipative soliton large-mode-area fiber laser,” Opt. Lett. 35(13), 2311–2313 (2010).
    [CrossRef] [PubMed]
  5. C. Lecaplain, B. Ortaç, G. Machinet, J. Boullet, M. Baumgartl, T. Schreiber, E. Cormier, and A. Hideur, “High-energy femtosecond photonic crystal fiber laser,” Opt. Lett. 35(19), 3156–3158 (2010).
    [CrossRef] [PubMed]
  6. M. Baumgartl, F. Jansen, F. Stutzki, C. Jauregui, B. Ortaç, J. Limpert, and A. Tünnermann, “High average and peak power femtosecond large-pitch photonic-crystal-fiber laser,” Opt. Lett. 36(2), 244–246 (2011).
    [CrossRef] [PubMed]
  7. K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149 (1994).
    [CrossRef]
  8. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
    [CrossRef] [PubMed]
  9. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
    [CrossRef] [PubMed]
  10. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [CrossRef] [PubMed]
  11. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
    [CrossRef]
  12. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15(13), 8252–8262 (2007).
    [CrossRef] [PubMed]
  13. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
    [CrossRef]
  14. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25(10), 1763–1770 (2008).
    [CrossRef]

2011 (1)

2010 (3)

2009 (2)

2008 (3)

2007 (1)

2006 (2)

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

1994 (1)

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149 (1994).
[CrossRef]

Bale, B. G.

Baumgartl, M.

Boullet, J.

Buckley, J.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Chong, A.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Cormier, E.

Deng, Y.

Haus, H. A.

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149 (1994).
[CrossRef]

Hideur, A.

Ilday, F. Ö.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Ippen, E. P.

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149 (1994).
[CrossRef]

Jansen, F.

Jauregui, C.

Kafka, J. D.

Kieu, K.

Kutz, J. N.

Lecaplain, C.

Lefrançois, S.

Limpert, J.

Machinet, G.

Nelson, L. E.

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149 (1994).
[CrossRef]

Ortaç, B.

Renninger, W.

Renninger, W. H.

Schreiber, T.

Stutzki, F.

Tamura, K.

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149 (1994).
[CrossRef]

Tang, D. Y.

Tünnermann, A.

Wise, F.

Wise, F. W.

Wu, J.

Zhao, L. M.

Appl. Phys. Lett. (1)

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (2)

Opt. Lett. (7)

Phys. Rev. A (1)

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic representation of the mode-locked all-normal dispersion fiber laser (a) and basin of attractors presented in the space of temporal and spectral width (RMS values) for the parameters of Esat = 20 nJ, ΔR = 35% and Psat = 100 W. The lines connect the measured values after each roundtrip (after the gain fiber). The arrows indicate the evolution from the initial condition to the attractor marked with a yellow circle.

Fig. 2
Fig. 2

Results of simulations for Esat = 20 nJ, ΔR = 35% and Psat = 100 W: optical spectrum (a), pulse profile before (b) and after external dechirping (c). The dotted curves correspond to the instantaneous frequency.

Fig. 3
Fig. 3

Pulse energy (a) and dechirped pulse features (b) versus the SA’s modulation depth.

Fig. 4
Fig. 4

Energy and spectral shape evolution versus pump power for ΔR = 80%.

Fig. 5
Fig. 5

Laser performances versus pump power for ΔR = 80%: (a) pulse duration and spectral width, (b) dechirped pulse duration and transform-limited duration. Pulse evolution inside the cavity for Esat = 70 nJ (c), OC: output coupler, SA: saturable absorber

Fig. 6
Fig. 6

Laser performances versus SF bandwidth for: (a) energy and peak-power for a fixed pump power (Esat = 10 nJ), (b) maximum pulse energy.

Fig. 7
Fig. 7

Evolution of pulse energy and spectral shape versus pump power for a SF bandwidth of 10 nm.

Fig. 8
Fig. 8

Evolution of pulse energy and spectral shape versus pump power for a SF bandwidth of 15 nm.

Fig. 9
Fig. 9

Laser performances versus pump power for a 10 nm SF (a) and pulse dynamics for 34 nJ pulse energy (b). OC, Output coupler; SA: saturable absorber; SF, Spectral filter.

Fig. 10
Fig. 10

Schematic representation of the passively mode-locked fiber laser. SF: spectral filter; DM: dichroic mirror; HR: high reflection mirror

Fig. 11
Fig. 11

Typical output characteristics of the NPE-based mode-locked laser: optical spectrum on a linear scale (a) and autocorrelation traces of the dechirped pulse (b) and the pulse (Inset).

Fig. 12
Fig. 12

Typical output characteristics of the laser including a 10 nm bandwidth SF: optical spectrum on a linear and logarithmic scales (a) and autocorrelation trace of the dechirped pulses (b). Inset: Autocorrelation trace of the output pulses.

Fig. 13
Fig. 13

(a) Pulse train on a 7 GHz sampling oscilloscope, (b) high energy beam profile, (c) rf spectrum on a span of 50 kHz, resolution bandwidth 50 Hz.

Tables (1)

Tables Icon

Table 1 Fiber parameters used in the simulation

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i A z = β 2 2 2 A t 2 γ | A | 2 A+igA+ ig Δ Ω g 2 2 A t 2
A out = A in ( 1ΔR ( 1+ | A(t) | 2 P sat ) 1 )

Metrics