Abstract

A new type of semiconductor quantum well (QW) for high-speed all optical wavelength converter (AOWC) is proposed and demonstrated in this work. Based on InGaAsP (well)/InGaAlAs (barrier) multiple QW, large electron band offset ratio relative to heavy hole can be attained to shorten sweep rate of photocarrier driven by electric field, realizing high-speed efficient AOWC through cross absorption modulation (XAM). By such QWs, an optical waveguide with high-speed electrode connection is fabricated. A −3dB bandwidth of 38 GHz with 8V bias in time-varying photocurrent and all optical response is observed. The corresponding sweep time is less than 10ps, consistent with calculated tunneling rate of QW and thus confirming high sweep rate through field-driven tunneling processing. All-optical conversion with error-free 40Gb/s data transmission and −11dB of conversion efficiency in system performance is also attained in this device, suggesting that such AOWC has potential for 100Gb/s application.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion-shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. 4(2), 204–214 (1998).
    [CrossRef]
  2. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
    [CrossRef]
  3. M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, “Single-chip, widely-tunable 10Gbit.s photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver,” Electron. Lett. 42(11), 657–658 (2006).
    [CrossRef]
  4. M. Hattori, K. Nishimura, R. Inohara, and M. Usami, “Bidirectional data injection operation of hybrid integrated SOA-MZI all-optical wavelength converter,” J. Lightwave Technol. 25(2), 512–519 (2007).
    [CrossRef]
  5. A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, “Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation,” IEEE J. Quantum Electron. 42(3), 313–323 (2006).
    [CrossRef]
  6. J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. B. Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19(24), 1955–1957 (2007).
    [CrossRef]
  7. M. Spyropoulou, N. Pleros, K. Vyrsokinos, D. Apostolopoulos, M. Bougioukos, D. Petrantonakis, A. Miliou, and H. Avramopoulos, “40 Gb/s NRZ wavelength conversion using a differentially-biased SOA-MZI: Theory and experiment,” J. Lightwave Technol. 29(10), 1489–1499 (2011).
    [CrossRef]
  8. G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA,” IEEE Photon. Technol. Lett. 17(12), 2652–2654 (2005).
    [CrossRef]
  9. B. E. Olsson and D. J. Blumenthal, “WDM to OTDM multiplexing using an ultrafast all-optical wavelength converter,” IEEE Photon. Technol. Lett. 13(9), 1005–1007 (2001).
    [CrossRef]
  10. K. K. Chow and C. Shu, “All-optical signal regeneration with wavelength multicasting at 6x10 Gb/s using a single electroabsorption modulator,” Opt. Express 12(13), 3050–3054 (2004).
    [CrossRef] [PubMed]
  11. J. Yu, Z. Jia, and G. K. Chang, “All-optical mixer based on cross-absorption modulation in electroabsorption modulator,” IEEE Photon. Technol. Lett. 17(11), 2421–2423 (2005).
    [CrossRef]
  12. H. S. Chung, R. Inohara, K. Nishimura, and M. Usami, “40-Gb/s NRZ wavelength conversion with 3R regeneration using an EA modulator and SOA polarization-discriminating delay interferometer,” IEEE Photon. Technol. Lett. 18(2), 337–339 (2006).
    [CrossRef]
  13. K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE J. Sel. Top. Quantum Electron. 11(1), 278–284 (2005).
    [CrossRef]
  14. N. E. Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B.-E. Benkelfat, and A. Ramdane, “New design of InGaAs–InGaAlAs MQW Electroabsorption modulator for high-speed all-optical wavelength conversion,” IEEE Photon. Technol. Lett. 16(10), 2302–2304 (2004).
    [CrossRef]
  15. S. Hojfeldt and J. Mork, “Modeling of carrier dynamics in quantum-well Electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1265–1276 (2002).
    [CrossRef]
  16. T. Otani, T. Miyazaki, and S. Yamamoto, “Optical 3R regenerator using wavelength converters based on Electroabsorption modulator for all-optical network applications,” IEEE Photon. Technol. Lett. 12(4), 431–433 (2000).
    [CrossRef]
  17. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory, 3rd ed. 178–181 (1977).
  18. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: Relation to Electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
    [CrossRef]
  19. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
    [CrossRef] [PubMed]
  20. J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
    [CrossRef]
  21. F.-Z. Lin, Y.-J. Chiu, S. A. Tsai, and T.-H. Wu, “Laterally tapered undercut active waveguide fabricated by simple wet etching method for vertical waveguide directional coupler,” Opt. Express 16(11), 7588–7594 (2008).
    [CrossRef] [PubMed]

2011 (1)

2008 (1)

2007 (2)

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. B. Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19(24), 1955–1957 (2007).
[CrossRef]

M. Hattori, K. Nishimura, R. Inohara, and M. Usami, “Bidirectional data injection operation of hybrid integrated SOA-MZI all-optical wavelength converter,” J. Lightwave Technol. 25(2), 512–519 (2007).
[CrossRef]

2006 (3)

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, “Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation,” IEEE J. Quantum Electron. 42(3), 313–323 (2006).
[CrossRef]

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, “Single-chip, widely-tunable 10Gbit.s photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver,” Electron. Lett. 42(11), 657–658 (2006).
[CrossRef]

H. S. Chung, R. Inohara, K. Nishimura, and M. Usami, “40-Gb/s NRZ wavelength conversion with 3R regeneration using an EA modulator and SOA polarization-discriminating delay interferometer,” IEEE Photon. Technol. Lett. 18(2), 337–339 (2006).
[CrossRef]

2005 (3)

K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE J. Sel. Top. Quantum Electron. 11(1), 278–284 (2005).
[CrossRef]

J. Yu, Z. Jia, and G. K. Chang, “All-optical mixer based on cross-absorption modulation in electroabsorption modulator,” IEEE Photon. Technol. Lett. 17(11), 2421–2423 (2005).
[CrossRef]

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA,” IEEE Photon. Technol. Lett. 17(12), 2652–2654 (2005).
[CrossRef]

2004 (2)

K. K. Chow and C. Shu, “All-optical signal regeneration with wavelength multicasting at 6x10 Gb/s using a single electroabsorption modulator,” Opt. Express 12(13), 3050–3054 (2004).
[CrossRef] [PubMed]

N. E. Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B.-E. Benkelfat, and A. Ramdane, “New design of InGaAs–InGaAlAs MQW Electroabsorption modulator for high-speed all-optical wavelength conversion,” IEEE Photon. Technol. Lett. 16(10), 2302–2304 (2004).
[CrossRef]

2003 (1)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

2002 (1)

S. Hojfeldt and J. Mork, “Modeling of carrier dynamics in quantum-well Electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1265–1276 (2002).
[CrossRef]

2001 (1)

B. E. Olsson and D. J. Blumenthal, “WDM to OTDM multiplexing using an ultrafast all-optical wavelength converter,” IEEE Photon. Technol. Lett. 13(9), 1005–1007 (2001).
[CrossRef]

2000 (1)

T. Otani, T. Miyazaki, and S. Yamamoto, “Optical 3R regenerator using wavelength converters based on Electroabsorption modulator for all-optical network applications,” IEEE Photon. Technol. Lett. 12(4), 431–433 (2000).
[CrossRef]

1999 (1)

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[CrossRef]

1998 (1)

M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion-shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. 4(2), 204–214 (1998).
[CrossRef]

1991 (1)

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: Relation to Electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[CrossRef]

1985 (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

Akasaka, N.

M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion-shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. 4(2), 204–214 (1998).
[CrossRef]

Akiba, S.

K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE J. Sel. Top. Quantum Electron. 11(1), 278–284 (2005).
[CrossRef]

Apostolopoulos, D.

Aubin, G.

N. E. Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B.-E. Benkelfat, and A. Ramdane, “New design of InGaAs–InGaAlAs MQW Electroabsorption modulator for high-speed all-optical wavelength conversion,” IEEE Photon. Technol. Lett. 16(10), 2302–2304 (2004).
[CrossRef]

Avramopoulos, H.

Barton, J. S.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, “Single-chip, widely-tunable 10Gbit.s photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver,” Electron. Lett. 42(11), 657–658 (2006).
[CrossRef]

Benkelfat, B.-E.

N. E. Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B.-E. Benkelfat, and A. Ramdane, “New design of InGaAs–InGaAlAs MQW Electroabsorption modulator for high-speed all-optical wavelength conversion,” IEEE Photon. Technol. Lett. 16(10), 2302–2304 (2004).
[CrossRef]

Blumenthal, D. J.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, “Single-chip, widely-tunable 10Gbit.s photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver,” Electron. Lett. 42(11), 657–658 (2006).
[CrossRef]

B. E. Olsson and D. J. Blumenthal, “WDM to OTDM multiplexing using an ultrafast all-optical wavelength converter,” IEEE Photon. Technol. Lett. 13(9), 1005–1007 (2001).
[CrossRef]

Bouchoule, S.

N. E. Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B.-E. Benkelfat, and A. Ramdane, “New design of InGaAs–InGaAlAs MQW Electroabsorption modulator for high-speed all-optical wavelength conversion,” IEEE Photon. Technol. Lett. 16(10), 2302–2304 (2004).
[CrossRef]

Bougioukos, M.

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

Calabretta, N.

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA,” IEEE Photon. Technol. Lett. 17(12), 2652–2654 (2005).
[CrossRef]

Chang, G. K.

J. Yu, Z. Jia, and G. K. Chang, “All-optical mixer based on cross-absorption modulation in electroabsorption modulator,” IEEE Photon. Technol. Lett. 17(11), 2421–2423 (2005).
[CrossRef]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

Chiu, Y.-J.

Chow, K. K.

Chuang, S. L.

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[CrossRef]

Chung, H. S.

H. S. Chung, R. Inohara, K. Nishimura, and M. Usami, “40-Gb/s NRZ wavelength conversion with 3R regeneration using an EA modulator and SOA polarization-discriminating delay interferometer,” IEEE Photon. Technol. Lett. 18(2), 337–339 (2006).
[CrossRef]

Ciaramella, E.

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA,” IEEE Photon. Technol. Lett. 17(12), 2652–2654 (2005).
[CrossRef]

Coldren, L. A.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, “Single-chip, widely-tunable 10Gbit.s photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver,” Electron. Lett. 42(11), 657–658 (2006).
[CrossRef]

Contestabile, G.

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA,” IEEE Photon. Technol. Lett. 17(12), 2652–2654 (2005).
[CrossRef]

Cunningham, J. E.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: Relation to Electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[CrossRef]

Dahdah, N. E.

N. E. Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B.-E. Benkelfat, and A. Ramdane, “New design of InGaAs–InGaAlAs MQW Electroabsorption modulator for high-speed all-optical wavelength conversion,” IEEE Photon. Technol. Lett. 16(10), 2302–2304 (2004).
[CrossRef]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

Decobert, J.

N. E. Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B.-E. Benkelfat, and A. Ramdane, “New design of InGaAs–InGaAlAs MQW Electroabsorption modulator for high-speed all-optical wavelength conversion,” IEEE Photon. Technol. Lett. 16(10), 2302–2304 (2004).
[CrossRef]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Dummer, M.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, “Single-chip, widely-tunable 10Gbit.s photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver,” Electron. Lett. 42(11), 657–658 (2006).
[CrossRef]

Ezra, S. B.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. B. Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19(24), 1955–1957 (2007).
[CrossRef]

Fox, A. M.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: Relation to Electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[CrossRef]

Freude, W.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. B. Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19(24), 1955–1957 (2007).
[CrossRef]

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

Hattori, M.

Hojfeldt, S.

S. Hojfeldt and J. Mork, “Modeling of carrier dynamics in quantum-well Electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1265–1276 (2002).
[CrossRef]

Inohara, R.

M. Hattori, K. Nishimura, R. Inohara, and M. Usami, “Bidirectional data injection operation of hybrid integrated SOA-MZI all-optical wavelength converter,” J. Lightwave Technol. 25(2), 512–519 (2007).
[CrossRef]

H. S. Chung, R. Inohara, K. Nishimura, and M. Usami, “40-Gb/s NRZ wavelength conversion with 3R regeneration using an EA modulator and SOA polarization-discriminating delay interferometer,” IEEE Photon. Technol. Lett. 18(2), 337–339 (2006).
[CrossRef]

K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE J. Sel. Top. Quantum Electron. 11(1), 278–284 (2005).
[CrossRef]

Ishikawa, S.

M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion-shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. 4(2), 204–214 (1998).
[CrossRef]

Jan, W. Y.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: Relation to Electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[CrossRef]

Jia, Z.

J. Yu, Z. Jia, and G. K. Chang, “All-optical mixer based on cross-absorption modulation in electroabsorption modulator,” IEEE Photon. Technol. Lett. 17(11), 2421–2423 (2005).
[CrossRef]

Kashiwada, T.

M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion-shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. 4(2), 204–214 (1998).
[CrossRef]

Kazmierski, C.

N. E. Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B.-E. Benkelfat, and A. Ramdane, “New design of InGaAs–InGaAlAs MQW Electroabsorption modulator for high-speed all-optical wavelength conversion,” IEEE Photon. Technol. Lett. 16(10), 2302–2304 (2004).
[CrossRef]

Keating, T.

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[CrossRef]

Leuthold, J.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. B. Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19(24), 1955–1957 (2007).
[CrossRef]

Li, J.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. B. Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19(24), 1955–1957 (2007).
[CrossRef]

Lin, F.-Z.

Livescu, G.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: Relation to Electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[CrossRef]

Marculescu, A.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. B. Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19(24), 1955–1957 (2007).
[CrossRef]

Matsumoto, A.

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, “Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation,” IEEE J. Quantum Electron. 42(3), 313–323 (2006).
[CrossRef]

Miliou, A.

Miller, D. A. B.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: Relation to Electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

Minch, J.

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[CrossRef]

Miyazaki, T.

T. Otani, T. Miyazaki, and S. Yamamoto, “Optical 3R regenerator using wavelength converters based on Electroabsorption modulator for all-optical network applications,” IEEE Photon. Technol. Lett. 12(4), 431–433 (2000).
[CrossRef]

Mork, J.

S. Hojfeldt and J. Mork, “Modeling of carrier dynamics in quantum-well Electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1265–1276 (2002).
[CrossRef]

Nishimura, K.

M. Hattori, K. Nishimura, R. Inohara, and M. Usami, “Bidirectional data injection operation of hybrid integrated SOA-MZI all-optical wavelength converter,” J. Lightwave Technol. 25(2), 512–519 (2007).
[CrossRef]

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, “Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation,” IEEE J. Quantum Electron. 42(3), 313–323 (2006).
[CrossRef]

H. S. Chung, R. Inohara, K. Nishimura, and M. Usami, “40-Gb/s NRZ wavelength conversion with 3R regeneration using an EA modulator and SOA polarization-discriminating delay interferometer,” IEEE Photon. Technol. Lett. 18(2), 337–339 (2006).
[CrossRef]

K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE J. Sel. Top. Quantum Electron. 11(1), 278–284 (2005).
[CrossRef]

Nishimura, M.

M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion-shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. 4(2), 204–214 (1998).
[CrossRef]

Okuno, T.

M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion-shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. 4(2), 204–214 (1998).
[CrossRef]

Olsson, B. E.

B. E. Olsson and D. J. Blumenthal, “WDM to OTDM multiplexing using an ultrafast all-optical wavelength converter,” IEEE Photon. Technol. Lett. 13(9), 1005–1007 (2001).
[CrossRef]

Onishi, M.

M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion-shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. 4(2), 204–214 (1998).
[CrossRef]

Otani, T.

T. Otani, T. Miyazaki, and S. Yamamoto, “Optical 3R regenerator using wavelength converters based on Electroabsorption modulator for all-optical network applications,” IEEE Photon. Technol. Lett. 12(4), 431–433 (2000).
[CrossRef]

Park, S. H.

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[CrossRef]

Petrantonakis, D.

Pleros, N.

Poulsen, H. N.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, “Single-chip, widely-tunable 10Gbit.s photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver,” Electron. Lett. 42(11), 657–658 (2006).
[CrossRef]

Presi, M.

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA,” IEEE Photon. Technol. Lett. 17(12), 2652–2654 (2005).
[CrossRef]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Ramdane, A.

N. E. Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B.-E. Benkelfat, and A. Ramdane, “New design of InGaAs–InGaAlAs MQW Electroabsorption modulator for high-speed all-optical wavelength conversion,” IEEE Photon. Technol. Lett. 16(10), 2302–2304 (2004).
[CrossRef]

Raring, J. W.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, “Single-chip, widely-tunable 10Gbit.s photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver,” Electron. Lett. 42(11), 657–658 (2006).
[CrossRef]

Shen, A.

N. E. Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B.-E. Benkelfat, and A. Ramdane, “New design of InGaAs–InGaAlAs MQW Electroabsorption modulator for high-speed all-optical wavelength conversion,” IEEE Photon. Technol. Lett. 16(10), 2302–2304 (2004).
[CrossRef]

Shu, C.

Spyropoulou, M.

Sysak, M. N.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, “Single-chip, widely-tunable 10Gbit.s photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver,” Electron. Lett. 42(11), 657–658 (2006).
[CrossRef]

Tauke-Pedretti, A.

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, “Single-chip, widely-tunable 10Gbit.s photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver,” Electron. Lett. 42(11), 657–658 (2006).
[CrossRef]

Tsadka, S.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. B. Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19(24), 1955–1957 (2007).
[CrossRef]

Tsai, S. A.

Tzadok, S.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. B. Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19(24), 1955–1957 (2007).
[CrossRef]

Usami, M.

M. Hattori, K. Nishimura, R. Inohara, and M. Usami, “Bidirectional data injection operation of hybrid integrated SOA-MZI all-optical wavelength converter,” J. Lightwave Technol. 25(2), 512–519 (2007).
[CrossRef]

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, “Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation,” IEEE J. Quantum Electron. 42(3), 313–323 (2006).
[CrossRef]

H. S. Chung, R. Inohara, K. Nishimura, and M. Usami, “40-Gb/s NRZ wavelength conversion with 3R regeneration using an EA modulator and SOA polarization-discriminating delay interferometer,” IEEE Photon. Technol. Lett. 18(2), 337–339 (2006).
[CrossRef]

K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE J. Sel. Top. Quantum Electron. 11(1), 278–284 (2005).
[CrossRef]

Utaka, K.

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, “Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation,” IEEE J. Quantum Electron. 42(3), 313–323 (2006).
[CrossRef]

Vorreau, P.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. B. Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19(24), 1955–1957 (2007).
[CrossRef]

Vyrsokinos, K.

Wang, J.

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. B. Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19(24), 1955–1957 (2007).
[CrossRef]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

Wu, T.-H.

Yamamoto, S.

T. Otani, T. Miyazaki, and S. Yamamoto, “Optical 3R regenerator using wavelength converters based on Electroabsorption modulator for all-optical network applications,” IEEE Photon. Technol. Lett. 12(4), 431–433 (2000).
[CrossRef]

Yu, J.

J. Yu, Z. Jia, and G. K. Chang, “All-optical mixer based on cross-absorption modulation in electroabsorption modulator,” IEEE Photon. Technol. Lett. 17(11), 2421–2423 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82(18), 2954–2956 (2003).
[CrossRef]

Electron. Lett. (1)

M. N. Sysak, J. W. Raring, J. S. Barton, M. Dummer, A. Tauke-Pedretti, H. N. Poulsen, D. J. Blumenthal, and L. A. Coldren, “Single-chip, widely-tunable 10Gbit.s photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver,” Electron. Lett. 42(11), 657–658 (2006).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. Matsumoto, K. Nishimura, K. Utaka, and M. Usami, “Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation,” IEEE J. Quantum Electron. 42(3), 313–323 (2006).
[CrossRef]

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: Relation to Electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27(10), 2281–2295 (1991).
[CrossRef]

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

K. Nishimura, R. Inohara, M. Usami, and S. Akiba, “All-optical wavelength conversion by electroabsorption modulator,” IEEE J. Sel. Top. Quantum Electron. 11(1), 278–284 (2005).
[CrossRef]

S. Hojfeldt and J. Mork, “Modeling of carrier dynamics in quantum-well Electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1265–1276 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

T. Otani, T. Miyazaki, and S. Yamamoto, “Optical 3R regenerator using wavelength converters based on Electroabsorption modulator for all-optical network applications,” IEEE Photon. Technol. Lett. 12(4), 431–433 (2000).
[CrossRef]

N. E. Dahdah, J. Decobert, A. Shen, S. Bouchoule, C. Kazmierski, G. Aubin, B.-E. Benkelfat, and A. Ramdane, “New design of InGaAs–InGaAlAs MQW Electroabsorption modulator for high-speed all-optical wavelength conversion,” IEEE Photon. Technol. Lett. 16(10), 2302–2304 (2004).
[CrossRef]

J. Wang, A. Marculescu, J. Li, P. Vorreau, S. Tzadok, S. B. Ezra, S. Tsadka, W. Freude, and J. Leuthold, “Pattern effect removal technique for semiconductor-optical-amplifier-based wavelength conversion,” IEEE Photon. Technol. Lett. 19(24), 1955–1957 (2007).
[CrossRef]

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA,” IEEE Photon. Technol. Lett. 17(12), 2652–2654 (2005).
[CrossRef]

B. E. Olsson and D. J. Blumenthal, “WDM to OTDM multiplexing using an ultrafast all-optical wavelength converter,” IEEE Photon. Technol. Lett. 13(9), 1005–1007 (2001).
[CrossRef]

J. Yu, Z. Jia, and G. K. Chang, “All-optical mixer based on cross-absorption modulation in electroabsorption modulator,” IEEE Photon. Technol. Lett. 17(11), 2421–2423 (2005).
[CrossRef]

H. S. Chung, R. Inohara, K. Nishimura, and M. Usami, “40-Gb/s NRZ wavelength conversion with 3R regeneration using an EA modulator and SOA polarization-discriminating delay interferometer,” IEEE Photon. Technol. Lett. 18(2), 337–339 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (2)

Opt. Fiber Technol. (1)

M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, “Highly nonlinear dispersion-shifted fibers and their application to broadband wavelength converter,” Opt. Fiber Technol. 4(2), 204–214 (1998).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B Condens. Matter 32(2), 1043–1060 (1985).
[CrossRef] [PubMed]

Other (1)

L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory, 3rd ed. 178–181 (1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated photocarrier life time through tunneling processing with applied electric field.

Fig. 2
Fig. 2

(left) device picture and (right) the schematic plot of measurement setup. RX is photoreceiver.

Fig. 3
Fig. 3

(left) different-bias OE response with frequency. The dash curve is simulated curve. (right) OO response.

Fig. 4
Fig. 4

(left) eye diagram of pump signal and converted signal, (right) the corresponding bit error rate.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 ( τ T ) i = nπ 2 L w 2 m i exp[ 2 L b 2 m bi [Δ E i E i (n) | e | F( L w + L b ) 2 ] ]

Metrics