Abstract

We present a new and simple approach for the generation of Q-switched, mode-locked pulses from a laser cavity. The approach is based on cavity loss modulation that employs a subharmonic frequency of the fundamental intermode frequency spacing. A range of experiments have been carried out using an erbium-doped fiber-based ring cavity laser in order to verify that this simple approach can readily produce high quality Q-switched, mode-locked pulses. An active tuning of the Q-switched envelope repetition rate is also shown to be easily achievable by adjusting the order of the applied subharmonic frequency.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yoshida, N. Shimizu, and M. Nakazawa, “A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm,” IEEE Photon. Technol. Lett. 11(12), 1587–1589 (1999).
    [CrossRef]
  2. H. Don Lee, J. H. Lee, M. Y. Jeong, and C. S. Kim, “Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier,” Opt. Express 19(15), 14586–14593 (2011).
    [CrossRef] [PubMed]
  3. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
    [CrossRef] [PubMed]
  4. D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27(9), 730–732 (1991).
    [CrossRef]
  5. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
    [CrossRef]
  6. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
    [CrossRef]
  7. C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
    [CrossRef]
  8. P. K. Datta, S. Mukhopadhyay, S. K. Das, L. Tartara, A. Agnesi, and V. Degiorgio, “Enhancement of stability and efficiency of a nonlinear mirror mode-locked Nd:YVO4 oscillator by an active Q-switch,” Opt. Express 12(17), 4041–4046 (2004).
    [CrossRef] [PubMed]
  9. S. Zhao, G. Li, D. Li, K. Yang, Y. Li, M. Li, T. Li, G. Zhang, and K. Cheng, “Numerical simulation of dual-loss-modulated Q-switched and mode-locked laser with an acousto-optic and Cr4+:YAG saturable absorber,” Appl. Opt. 49(10), 1802–1808 (2010).
    [CrossRef] [PubMed]
  10. M. Li, S. Zhao, K. Yang, G. Li, D. Li, J. Wang, J. An, and W. Qiao, “Actively Q-switched and mode-locked diode-pumped Nd:GdVO4-KTP laser,” IEEE J. Quantum Electron. 44(3), 288–293 (2008).
    [CrossRef]
  11. C. Cuadrado-Laborde, A. Díez, J. L. Cruz, and M. V. Andrés, “Doubly active Q switching and mode locking of an all-fiber laser,” Opt. Lett. 34(18), 2709–2711 (2009).
    [CrossRef] [PubMed]
  12. J. K. Jabczyński, W. Zendzian, and J. Kwiatkowski, “Q-switched mode locking with acousto-optic modulator in a diode-pumped Nd:YVO4 laser,” Opt. Express 14(6), 2184–2190 (2006).
    [CrossRef] [PubMed]
  13. C. Theobald, M. Weitz, R. Knappe, R. Wallenstein, and J. A. L’Huillier, “Stable Q-switch mode-locking of Nd:YVO4 lasers with a semiconductor saturable absorber,” Appl. Phys. B 92(1), 1–3 (2008).
    [CrossRef]
  14. Y.-F. Chen and S. W. Tsai, “Simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO4-Cr4+:YAG laser,” IEEE J. Quantum Electron. 37(4), 580–586 (2001).
    [CrossRef]
  15. J.-H. Lin, K.-H. Lin, C.-C. Hsu, W. H. Yang, and W.-F. Hsieh, “Supercontinuum generation in a microstructured optical fiber by picosecond self Q-switched mode-locked Nd:GdVO4 laser,” Laser Phys. Lett. 4(6), 413–417 (2007).
    [CrossRef]
  16. D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16(21), 16754–16765 (2008).
    [CrossRef] [PubMed]
  17. Y. M. Chang, J. Lee, Y. M. Jhon, and J. H. Lee, “Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator,” Opt. Express (under revision for final decision, Oct. 2011).
  18. J.-H. Lin, H.-R. Chen, H.-H. Hsu, M.-D. Wei, K.-H. Lin, and W.-F. Hsieh, “Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal,” Opt. Express 16(21), 16538–16545 (2008).
    [PubMed]

2011 (1)

2010 (1)

2009 (1)

2008 (4)

J.-H. Lin, H.-R. Chen, H.-H. Hsu, M.-D. Wei, K.-H. Lin, and W.-F. Hsieh, “Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal,” Opt. Express 16(21), 16538–16545 (2008).
[PubMed]

D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16(21), 16754–16765 (2008).
[CrossRef] [PubMed]

M. Li, S. Zhao, K. Yang, G. Li, D. Li, J. Wang, J. An, and W. Qiao, “Actively Q-switched and mode-locked diode-pumped Nd:GdVO4-KTP laser,” IEEE J. Quantum Electron. 44(3), 288–293 (2008).
[CrossRef]

C. Theobald, M. Weitz, R. Knappe, R. Wallenstein, and J. A. L’Huillier, “Stable Q-switch mode-locking of Nd:YVO4 lasers with a semiconductor saturable absorber,” Appl. Phys. B 92(1), 1–3 (2008).
[CrossRef]

2007 (1)

J.-H. Lin, K.-H. Lin, C.-C. Hsu, W. H. Yang, and W.-F. Hsieh, “Supercontinuum generation in a microstructured optical fiber by picosecond self Q-switched mode-locked Nd:GdVO4 laser,” Laser Phys. Lett. 4(6), 413–417 (2007).
[CrossRef]

2006 (1)

2004 (2)

2001 (2)

C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
[CrossRef] [PubMed]

Y.-F. Chen and S. W. Tsai, “Simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO4-Cr4+:YAG laser,” IEEE J. Quantum Electron. 37(4), 580–586 (2001).
[CrossRef]

2000 (1)

C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
[CrossRef]

1999 (1)

E. Yoshida, N. Shimizu, and M. Nakazawa, “A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm,” IEEE Photon. Technol. Lett. 11(12), 1587–1589 (1999).
[CrossRef]

1995 (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[CrossRef]

1991 (1)

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27(9), 730–732 (1991).
[CrossRef]

Agnesi, A.

An, J.

M. Li, S. Zhao, K. Yang, G. Li, D. Li, J. Wang, J. An, and W. Qiao, “Actively Q-switched and mode-locked diode-pumped Nd:GdVO4-KTP laser,” IEEE J. Quantum Electron. 44(3), 288–293 (2008).
[CrossRef]

Andrés, M. V.

Asghari, M.

Brodeur, A.

Chang, Y. M.

Y. M. Chang, J. Lee, Y. M. Jhon, and J. H. Lee, “Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator,” Opt. Express (under revision for final decision, Oct. 2011).

Chen, H.-R.

Chen, Y.-F.

Y.-F. Chen and S. W. Tsai, “Simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO4-Cr4+:YAG laser,” IEEE J. Quantum Electron. 37(4), 580–586 (2001).
[CrossRef]

Cheng, K.

Cruz, J. L.

Cuadrado-Laborde, C.

Das, S. K.

Datta, P. K.

Degiorgio, V.

Díez, A.

Don Lee, H.

Dutta, N. K.

C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
[CrossRef]

García, J. F.

Haus, H. A.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[CrossRef]

Hsieh, W.-F.

J.-H. Lin, H.-R. Chen, H.-H. Hsu, M.-D. Wei, K.-H. Lin, and W.-F. Hsieh, “Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal,” Opt. Express 16(21), 16538–16545 (2008).
[PubMed]

J.-H. Lin, K.-H. Lin, C.-C. Hsu, W. H. Yang, and W.-F. Hsieh, “Supercontinuum generation in a microstructured optical fiber by picosecond self Q-switched mode-locked Nd:GdVO4 laser,” Laser Phys. Lett. 4(6), 413–417 (2007).
[CrossRef]

Hsu, C.-C.

J.-H. Lin, K.-H. Lin, C.-C. Hsu, W. H. Yang, and W.-F. Hsieh, “Supercontinuum generation in a microstructured optical fiber by picosecond self Q-switched mode-locked Nd:GdVO4 laser,” Laser Phys. Lett. 4(6), 413–417 (2007).
[CrossRef]

Hsu, H.-H.

Ippen, E. P.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[CrossRef]

Jabczynski, J. K.

Jablonski, M.

Jeong, M. Y.

Jhon, Y. M.

Y. M. Chang, J. Lee, Y. M. Jhon, and J. H. Lee, “Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator,” Opt. Express (under revision for final decision, Oct. 2011).

Kim, C. S.

Knappe, R.

C. Theobald, M. Weitz, R. Knappe, R. Wallenstein, and J. A. L’Huillier, “Stable Q-switch mode-locking of Nd:YVO4 lasers with a semiconductor saturable absorber,” Appl. Phys. B 92(1), 1–3 (2008).
[CrossRef]

Kwiatkowski, J.

L’Huillier, J. A.

C. Theobald, M. Weitz, R. Knappe, R. Wallenstein, and J. A. L’Huillier, “Stable Q-switch mode-locking of Nd:YVO4 lasers with a semiconductor saturable absorber,” Appl. Phys. B 92(1), 1–3 (2008).
[CrossRef]

Laming, R. I.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27(9), 730–732 (1991).
[CrossRef]

Lee, J.

Y. M. Chang, J. Lee, Y. M. Jhon, and J. H. Lee, “Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator,” Opt. Express (under revision for final decision, Oct. 2011).

Lee, J. H.

H. Don Lee, J. H. Lee, M. Y. Jeong, and C. S. Kim, “Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier,” Opt. Express 19(15), 14586–14593 (2011).
[CrossRef] [PubMed]

Y. M. Chang, J. Lee, Y. M. Jhon, and J. H. Lee, “Active Q-switching in an erbium-doped fiber laser using an ultrafast silicon-based variable optical attenuator,” Opt. Express (under revision for final decision, Oct. 2011).

Li, D.

S. Zhao, G. Li, D. Li, K. Yang, Y. Li, M. Li, T. Li, G. Zhang, and K. Cheng, “Numerical simulation of dual-loss-modulated Q-switched and mode-locked laser with an acousto-optic and Cr4+:YAG saturable absorber,” Appl. Opt. 49(10), 1802–1808 (2010).
[CrossRef] [PubMed]

M. Li, S. Zhao, K. Yang, G. Li, D. Li, J. Wang, J. An, and W. Qiao, “Actively Q-switched and mode-locked diode-pumped Nd:GdVO4-KTP laser,” IEEE J. Quantum Electron. 44(3), 288–293 (2008).
[CrossRef]

Li, G.

S. Zhao, G. Li, D. Li, K. Yang, Y. Li, M. Li, T. Li, G. Zhang, and K. Cheng, “Numerical simulation of dual-loss-modulated Q-switched and mode-locked laser with an acousto-optic and Cr4+:YAG saturable absorber,” Appl. Opt. 49(10), 1802–1808 (2010).
[CrossRef] [PubMed]

M. Li, S. Zhao, K. Yang, G. Li, D. Li, J. Wang, J. An, and W. Qiao, “Actively Q-switched and mode-locked diode-pumped Nd:GdVO4-KTP laser,” IEEE J. Quantum Electron. 44(3), 288–293 (2008).
[CrossRef]

Li, M.

S. Zhao, G. Li, D. Li, K. Yang, Y. Li, M. Li, T. Li, G. Zhang, and K. Cheng, “Numerical simulation of dual-loss-modulated Q-switched and mode-locked laser with an acousto-optic and Cr4+:YAG saturable absorber,” Appl. Opt. 49(10), 1802–1808 (2010).
[CrossRef] [PubMed]

M. Li, S. Zhao, K. Yang, G. Li, D. Li, J. Wang, J. An, and W. Qiao, “Actively Q-switched and mode-locked diode-pumped Nd:GdVO4-KTP laser,” IEEE J. Quantum Electron. 44(3), 288–293 (2008).
[CrossRef]

Li, T.

Li, Y.

Lin, J.-H.

J.-H. Lin, H.-R. Chen, H.-H. Hsu, M.-D. Wei, K.-H. Lin, and W.-F. Hsieh, “Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal,” Opt. Express 16(21), 16538–16545 (2008).
[PubMed]

J.-H. Lin, K.-H. Lin, C.-C. Hsu, W. H. Yang, and W.-F. Hsieh, “Supercontinuum generation in a microstructured optical fiber by picosecond self Q-switched mode-locked Nd:GdVO4 laser,” Laser Phys. Lett. 4(6), 413–417 (2007).
[CrossRef]

Lin, K.-H.

J.-H. Lin, H.-R. Chen, H.-H. Hsu, M.-D. Wei, K.-H. Lin, and W.-F. Hsieh, “Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal,” Opt. Express 16(21), 16538–16545 (2008).
[PubMed]

J.-H. Lin, K.-H. Lin, C.-C. Hsu, W. H. Yang, and W.-F. Hsieh, “Supercontinuum generation in a microstructured optical fiber by picosecond self Q-switched mode-locked Nd:GdVO4 laser,” Laser Phys. Lett. 4(6), 413–417 (2007).
[CrossRef]

Matsas, V. J.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27(9), 730–732 (1991).
[CrossRef]

Mazur, E.

Mukhopadhyay, S.

Nakazawa, M.

E. Yoshida, N. Shimizu, and M. Nakazawa, “A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm,” IEEE Photon. Technol. Lett. 11(12), 1587–1589 (1999).
[CrossRef]

Nelson, L. E.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[CrossRef]

Payne, D. N.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27(9), 730–732 (1991).
[CrossRef]

Phillips, M. W.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27(9), 730–732 (1991).
[CrossRef]

Qiao, W.

M. Li, S. Zhao, K. Yang, G. Li, D. Li, J. Wang, J. An, and W. Qiao, “Actively Q-switched and mode-locked diode-pumped Nd:GdVO4-KTP laser,” IEEE J. Quantum Electron. 44(3), 288–293 (2008).
[CrossRef]

Richardson, D. J.

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27(9), 730–732 (1991).
[CrossRef]

Schaffer, C. B.

Set, S. Y.

Shimizu, N.

E. Yoshida, N. Shimizu, and M. Nakazawa, “A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm,” IEEE Photon. Technol. Lett. 11(12), 1587–1589 (1999).
[CrossRef]

Smith, B. T.

Tamura, K.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[CrossRef]

Tanaka, Y.

Tartara, L.

Theobald, C.

C. Theobald, M. Weitz, R. Knappe, R. Wallenstein, and J. A. L’Huillier, “Stable Q-switch mode-locking of Nd:YVO4 lasers with a semiconductor saturable absorber,” Appl. Phys. B 92(1), 1–3 (2008).
[CrossRef]

Tsai, S. W.

Y.-F. Chen and S. W. Tsai, “Simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO4-Cr4+:YAG laser,” IEEE J. Quantum Electron. 37(4), 580–586 (2001).
[CrossRef]

Wallenstein, R.

C. Theobald, M. Weitz, R. Knappe, R. Wallenstein, and J. A. L’Huillier, “Stable Q-switch mode-locking of Nd:YVO4 lasers with a semiconductor saturable absorber,” Appl. Phys. B 92(1), 1–3 (2008).
[CrossRef]

Wang, J.

M. Li, S. Zhao, K. Yang, G. Li, D. Li, J. Wang, J. An, and W. Qiao, “Actively Q-switched and mode-locked diode-pumped Nd:GdVO4-KTP laser,” IEEE J. Quantum Electron. 44(3), 288–293 (2008).
[CrossRef]

Wei, M.-D.

Weitz, M.

C. Theobald, M. Weitz, R. Knappe, R. Wallenstein, and J. A. L’Huillier, “Stable Q-switch mode-locking of Nd:YVO4 lasers with a semiconductor saturable absorber,” Appl. Phys. B 92(1), 1–3 (2008).
[CrossRef]

Wu, C.

C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
[CrossRef]

Yaguchi, H.

Yang, K.

S. Zhao, G. Li, D. Li, K. Yang, Y. Li, M. Li, T. Li, G. Zhang, and K. Cheng, “Numerical simulation of dual-loss-modulated Q-switched and mode-locked laser with an acousto-optic and Cr4+:YAG saturable absorber,” Appl. Opt. 49(10), 1802–1808 (2010).
[CrossRef] [PubMed]

M. Li, S. Zhao, K. Yang, G. Li, D. Li, J. Wang, J. An, and W. Qiao, “Actively Q-switched and mode-locked diode-pumped Nd:GdVO4-KTP laser,” IEEE J. Quantum Electron. 44(3), 288–293 (2008).
[CrossRef]

Yang, W. H.

J.-H. Lin, K.-H. Lin, C.-C. Hsu, W. H. Yang, and W.-F. Hsieh, “Supercontinuum generation in a microstructured optical fiber by picosecond self Q-switched mode-locked Nd:GdVO4 laser,” Laser Phys. Lett. 4(6), 413–417 (2007).
[CrossRef]

Yoshida, E.

E. Yoshida, N. Shimizu, and M. Nakazawa, “A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm,” IEEE Photon. Technol. Lett. 11(12), 1587–1589 (1999).
[CrossRef]

Zendzian, W.

Zhang, G.

Zhao, S.

S. Zhao, G. Li, D. Li, K. Yang, Y. Li, M. Li, T. Li, G. Zhang, and K. Cheng, “Numerical simulation of dual-loss-modulated Q-switched and mode-locked laser with an acousto-optic and Cr4+:YAG saturable absorber,” Appl. Opt. 49(10), 1802–1808 (2010).
[CrossRef] [PubMed]

M. Li, S. Zhao, K. Yang, G. Li, D. Li, J. Wang, J. An, and W. Qiao, “Actively Q-switched and mode-locked diode-pumped Nd:GdVO4-KTP laser,” IEEE J. Quantum Electron. 44(3), 288–293 (2008).
[CrossRef]

Zheng, D. W.

Appl. Opt. (1)

Appl. Phys. B (1)

C. Theobald, M. Weitz, R. Knappe, R. Wallenstein, and J. A. L’Huillier, “Stable Q-switch mode-locking of Nd:YVO4 lasers with a semiconductor saturable absorber,” Appl. Phys. B 92(1), 1–3 (2008).
[CrossRef]

Electron. Lett. (1)

D. J. Richardson, R. I. Laming, D. N. Payne, M. W. Phillips, and V. J. Matsas, “320 fs soliton generation with passively mode-locked erbium fibre laser,” Electron. Lett. 27(9), 730–732 (1991).
[CrossRef]

IEEE J. Quantum Electron. (4)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[CrossRef]

C. Wu and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron. 36(2), 145–150 (2000).
[CrossRef]

M. Li, S. Zhao, K. Yang, G. Li, D. Li, J. Wang, J. An, and W. Qiao, “Actively Q-switched and mode-locked diode-pumped Nd:GdVO4-KTP laser,” IEEE J. Quantum Electron. 44(3), 288–293 (2008).
[CrossRef]

Y.-F. Chen and S. W. Tsai, “Simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO4-Cr4+:YAG laser,” IEEE J. Quantum Electron. 37(4), 580–586 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. Yoshida, N. Shimizu, and M. Nakazawa, “A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530-1560 nm,” IEEE Photon. Technol. Lett. 11(12), 1587–1589 (1999).
[CrossRef]

J. Lightwave Technol. (1)

Laser Phys. Lett. (1)

J.-H. Lin, K.-H. Lin, C.-C. Hsu, W. H. Yang, and W.-F. Hsieh, “Supercontinuum generation in a microstructured optical fiber by picosecond self Q-switched mode-locked Nd:GdVO4 laser,” Laser Phys. Lett. 4(6), 413–417 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The laser schematic. (b) The measured optical spectrum of the output pulses.

Fig. 2
Fig. 2

(a) The measured optical attenuation v.s. the driving current curve of the VOA. (b) The measured oscilloscope traces of the applied sinusoidal electrical signal and their corresponding modulated optical beam at a frequency of 490 kHz through the VOA.

Fig. 3
Fig. 3

(a) The measured oscilloscope traces of the output optical pulses from a laser cavity with its loss modulation at a frequency of the fundamental intermode spacing and (b) a magnified view.

Fig. 4
Fig. 4

The measured oscilloscope traces of the output pulse trains for various orders (m) of the subharmonics. The fitting curves for the Q-switched envelopes are also shown.

Fig. 5
Fig. 5

(a) The measured oscilloscope trace of the output pulses at m = 20 and the fitting curves for the Q-switched envelopes are also shown. (b) Their electrical spectrum with a resolution bandwidth of 30 Hz.

Fig. 6
Fig. 6

The variation of the output pulse characteristics with an increasing subharmonic order: (a) average optical power, (b) Q-switched envelope width, (c) main pulse width, and (d) main pulse peak power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P(t)= a ( exp( 1.76t/ t 1 )+exp( 1.76t/ t 2 ) ) 2

Metrics