Abstract

Retrieving the full information carried by phase shift keyed (PSK) data streams requires a reference local oscillator (LO). If the receiver utilizes digital signal processing (DSP), a free-running LO can be used, although several benefits can be derived from generating an optical LO that is locked in frequency and phase to the original signal carrier (which is unfortunately suppressed in the PSK data modulation process). Here, we present a new concept of carrier recovery. Using nonlinear optics, we strip the data modulation and derive an error signal proportional to the phase/frequency difference between a free running intradyne LO and the data-stripped signal. After extracting this frequency difference (using slow electronics), we frequency shift the free running LO by this amount, effectively obtaining a homodyne LO. The carrier is recovered to a precision of better than ±0.5 Hz and the method is tested by performing homodyne detection of a 20 Gbaud binary PSK signal.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
    [CrossRef]
  2. K. Kim, K. Croussore, X. Li, and G. Li, “All-optical carrier synchronization using a phase-sensitive oscillator,” IEEE Photon. Tech. Lett. 19(13), 987–989 (2007).
    [CrossRef]
  3. S. K. Ibrahim, S. Sygletos, R. Weerasuriya, and A. D. Ellis, “Novel carrier extraction scheme for phase modulated signals using feed-forward based modulation stripping,” European Conference on Optical Communications (ECOC), 19–23 Sept. 2010, Torino, Italy, paper We7A4.
  4. A. Chiuchiarelli, M. J. Fice, E. Ciaramella, and A. J. Seeds, “Effective homodyne optical phase locking to PSK signal by means of 8b10b line coding,” Opt. Express 19(3), 1707–1712 (2011).
    [CrossRef] [PubMed]
  5. G.-W. Lu and T. Miyazaki, “Optical phase add-drop for format conversion between DQPSK and DPSK and its application in optical label switching systems,” IEEE Photon. Technol. Lett. 21(5), 322–324 (2009).
    [CrossRef]
  6. J.Kakande, A. Bogris, R. Slavík, F. Parmigiani, D. Syvridis, P. Petropoulos, and D.J. Richardson, “First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier,” ECOC 2010 PD 3.3 (2010).

2011 (1)

2009 (1)

G.-W. Lu and T. Miyazaki, “Optical phase add-drop for format conversion between DQPSK and DPSK and its application in optical label switching systems,” IEEE Photon. Technol. Lett. 21(5), 322–324 (2009).
[CrossRef]

2007 (1)

K. Kim, K. Croussore, X. Li, and G. Li, “All-optical carrier synchronization using a phase-sensitive oscillator,” IEEE Photon. Tech. Lett. 19(13), 987–989 (2007).
[CrossRef]

2004 (1)

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

Chiuchiarelli, A.

Ciaramella, E.

Croussore, K.

K. Kim, K. Croussore, X. Li, and G. Li, “All-optical carrier synchronization using a phase-sensitive oscillator,” IEEE Photon. Tech. Lett. 19(13), 987–989 (2007).
[CrossRef]

Fice, M. J.

Kim, K.

K. Kim, K. Croussore, X. Li, and G. Li, “All-optical carrier synchronization using a phase-sensitive oscillator,” IEEE Photon. Tech. Lett. 19(13), 987–989 (2007).
[CrossRef]

Li, G.

K. Kim, K. Croussore, X. Li, and G. Li, “All-optical carrier synchronization using a phase-sensitive oscillator,” IEEE Photon. Tech. Lett. 19(13), 987–989 (2007).
[CrossRef]

Li, X.

K. Kim, K. Croussore, X. Li, and G. Li, “All-optical carrier synchronization using a phase-sensitive oscillator,” IEEE Photon. Tech. Lett. 19(13), 987–989 (2007).
[CrossRef]

Lu, G.-W.

G.-W. Lu and T. Miyazaki, “Optical phase add-drop for format conversion between DQPSK and DPSK and its application in optical label switching systems,” IEEE Photon. Technol. Lett. 21(5), 322–324 (2009).
[CrossRef]

Miyazaki, T.

G.-W. Lu and T. Miyazaki, “Optical phase add-drop for format conversion between DQPSK and DPSK and its application in optical label switching systems,” IEEE Photon. Technol. Lett. 21(5), 322–324 (2009).
[CrossRef]

Seeds, A. J.

Taylor, M. G.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

K. Kim, K. Croussore, X. Li, and G. Li, “All-optical carrier synchronization using a phase-sensitive oscillator,” IEEE Photon. Tech. Lett. 19(13), 987–989 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

G.-W. Lu and T. Miyazaki, “Optical phase add-drop for format conversion between DQPSK and DPSK and its application in optical label switching systems,” IEEE Photon. Technol. Lett. 21(5), 322–324 (2009).
[CrossRef]

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

Opt. Express (1)

Other (2)

J.Kakande, A. Bogris, R. Slavík, F. Parmigiani, D. Syvridis, P. Petropoulos, and D.J. Richardson, “First demonstration of all-optical QPSK signal regeneration in a novel multi-format phase sensitive amplifier,” ECOC 2010 PD 3.3 (2010).

S. K. Ibrahim, S. Sygletos, R. Weerasuriya, and A. D. Ellis, “Novel carrier extraction scheme for phase modulated signals using feed-forward based modulation stripping,” European Conference on Optical Communications (ECOC), 19–23 Sept. 2010, Torino, Italy, paper We7A4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Modulation stripping – principle shown for the example of BPSK and QPSK modulation formats.

Fig. 2
Fig. 2

First step of the proposed method: Modulation stripping (a) is performed simultaneously to a similar process in which the data signal is replaced by an Intradyne LO (b).

Fig. 3
Fig. 3

Beating of the two idlers at a photodetector produces a beat signal at Ω beat .

Fig. 4
Fig. 4

Carrier recovery using RF frequency divider and a single-sideband modulator as an example of an optical frequency shifter.

Fig. 5
Fig. 5

Set-up of the realized carrier recovery scheme. IL – injection –locked laser, BPF – band pass filter, DeMUX – demultiplexer, EDFA – Erbium-doped fiber amplifier.

Fig. 6
Fig. 6

(a) Spectra measured at the output of the Ge-HNLF for 10 Gbaud (black solid) and 56 Gbaud (red dotted) data rates together with the ‘complementary signal’ spectra (blue dash). (b) RF spectrum of the detected beat signal at 10 GHz obtained for 10 Gbaud (black solid) and 56 Gbauds (red dotted) data rates, respectively.

Fig. 7
Fig. 7

Set-up (upper panels) and results (lower panels) of the static measurement - homodyne in temporal domain (a) and heterodyne in the RF frequency domain (b).

Fig. 8
Fig. 8

Homodyne constellation plots for a 20 Gbaud stream with (a) no dispersive propagation, (b) after propagation through 50 km of SMF-28 with effects of dispersion removed by digital signal processing (b). For comparison, the constellation obtained with a free running LO is also shown (c).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

φ idler 1 =2( φ data BPSK φ carrier ) φ pump =2 φ data BPSK 2 φ carrier φ pump .
φ idler 1 =2 φ carrier φ pump .
φ idler 3 =4( φ data QPSK φ carrier ) φ pump =4 φ carrier φ pump .
ω idler =2 ω carrier ω pump ; ω LOidler =2 ω intradyneLO ω pump
Ω beat = ω idler ω LOidler =2 ω carrier 2 ω intradyneLO
ω carrier = Ω beat /2 + ω intradyneLO .

Metrics