Abstract

In this paper we address high aggregate data rate coherent UDWDM-PONs (ultra-dense wavelength-division multiplexing passive optical networks) related physical impairments. Firstly, analog to digital converter resolution and laser linewidth are optimized giving the minimal signal to noise ratio penalty for UDWDM-PON systems at 10 Gb/s per user/wavelength. Secondly, inter-channel nonlinearities impact on high-order modulation formats at 1-2.5 Gb/s per channel and 100 km-reach is studied by means of Volterra series simulations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Effenberger, “The XG-PON System: Cost Effective 10 Gb/s Access,” J. Lightwave Technol. 29(4), 403–409 (2011), http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-4-403 .
    [CrossRef]
  2. S. Smolorz, H. Rohde, E. Gottwald, D. W. Smith, and A. Poustie, “Demonstration of a Coherent UDWDM-PON with Real-Time Processing,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPD4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-PDPD4 .
  3. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital back propagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008), http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-26-20-3416 .
    [CrossRef]
  4. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010), http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-4-662 .
    [CrossRef]
  5. J. D. Reis, D. M. Neves, and A. Teixeira, “Weighting Nonlinearities on Future High Aggregate Data Rate PONs,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.10.P1.109. http://www.opticsinfobase.org/abstract.cfm?URI=ECOC-2011-We.10.P1.109 .
  6. R. A. Shafik, Md.S. Rahman, A.R. Islam, “On the Extended Relationships Among EVM, BER and SNR as Performance Metrics,” in Proceedings of IEEE International Conference on Electrical and Computer Engineering (Institute of Electrical and Electronics Engineers, Dhaka, Bangladesh 2006), pp. 408–411.
  7. K.-P. Ho, “Phase-Modulated Optical Communication Systems,” (Springer, New York, NY., 2005).
  8. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-Efficient Coherent Digital Receiver Concept With Feedforward Carrier Recovery for M-QAM Constellations,” J. Lightwave Technol. 27(8), 989–999 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=jlt-27-8-989 .
    [CrossRef]
  9. M. Seimetz, “High-Order Modulation for Optical Fiber Transmission,” in Optical Sciences, W.T. Rhodes, ed. (Springer, Atlanta, GA., 2009).
  10. M. Seimetz, “Laser Linewidth Limitations for Optical Systems with High-Order Modulation Employing Feed Forward Digital Carrier Phase Estimation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuM2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OTuM2 .
  11. I. Fatadin, D. Ives, and S. J. Savory, “Laser Linewidth Tolerance for 16-QAM Coherent Optical Systems Using QPSK Partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
    [CrossRef]
  12. A. Bononi, M. Bertolini, P. Serena, and G. Bellotti, “Cross-Phase Modulation Induced by OOK Channels on Higher-Rate DQPSK and Coherent QPSK Channels,” J. Lightwave Technol. 27(18), 3974–3983 (2009), http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-18-3974 .
    [CrossRef]
  13. F. Rice, B. Cowley, B. Moran, and M. Rice, “Cramér-Rao Lower Bounds for QAM Phase and Frequency Estimation,” IEEE Trans. Commun. 49(9), 1582–1591 (2001).
    [CrossRef]
  14. K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra Series Transfer Function of Single-Mode Fibers,” J. Lightwave Technol. 15(12), 2232–2241 (1997).
    [CrossRef]
  15. B. Xu and M. B. Pearce, “Modified Volterra Series Transfer Function,” IEEE Photon. Technol. Lett. 14(1), 47–49 (2002).
    [CrossRef]
  16. J. D. Reis and A. L. Teixeira, “Unveiling nonlinear effects in dense coherent optical WDM systems with Volterra series,” Opt. Express 18(8), 8660–8670 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8660 .
    [CrossRef] [PubMed]
  17. N. Shibata, R. P. Braun, and R. G. Waarts, “Phase Mismatch Dependence of Efficiency of Wave Generation Through Four-Wave Mixing in a Single Mode Optical Fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
    [CrossRef]
  18. A. Bononi, N. Rossi, and P. Serena, “Transmission Limitations due to Fiber Nonlinearity,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWO7. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OWO7

2011 (1)

2010 (3)

2009 (2)

2008 (1)

2002 (1)

B. Xu and M. B. Pearce, “Modified Volterra Series Transfer Function,” IEEE Photon. Technol. Lett. 14(1), 47–49 (2002).
[CrossRef]

2001 (1)

F. Rice, B. Cowley, B. Moran, and M. Rice, “Cramér-Rao Lower Bounds for QAM Phase and Frequency Estimation,” IEEE Trans. Commun. 49(9), 1582–1591 (2001).
[CrossRef]

1997 (1)

K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra Series Transfer Function of Single-Mode Fibers,” J. Lightwave Technol. 15(12), 2232–2241 (1997).
[CrossRef]

1987 (1)

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase Mismatch Dependence of Efficiency of Wave Generation Through Four-Wave Mixing in a Single Mode Optical Fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[CrossRef]

Bellotti, G.

Bertolini, M.

Bononi, A.

Brandt-Pearce, M.

K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra Series Transfer Function of Single-Mode Fibers,” J. Lightwave Technol. 15(12), 2232–2241 (1997).
[CrossRef]

Braun, R. P.

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase Mismatch Dependence of Efficiency of Wave Generation Through Four-Wave Mixing in a Single Mode Optical Fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[CrossRef]

Cowley, B.

F. Rice, B. Cowley, B. Moran, and M. Rice, “Cramér-Rao Lower Bounds for QAM Phase and Frequency Estimation,” IEEE Trans. Commun. 49(9), 1582–1591 (2001).
[CrossRef]

Effenberger, F. J.

Essiambre, R.-J.

Fatadin, I.

I. Fatadin, D. Ives, and S. J. Savory, “Laser Linewidth Tolerance for 16-QAM Coherent Optical Systems Using QPSK Partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[CrossRef]

Foschini, G. J.

Goebel, B.

Hoffmann, S.

Ip, E.

Ives, D.

I. Fatadin, D. Ives, and S. J. Savory, “Laser Linewidth Tolerance for 16-QAM Coherent Optical Systems Using QPSK Partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[CrossRef]

Kahn, J. M.

Kramer, G.

Moran, B.

F. Rice, B. Cowley, B. Moran, and M. Rice, “Cramér-Rao Lower Bounds for QAM Phase and Frequency Estimation,” IEEE Trans. Commun. 49(9), 1582–1591 (2001).
[CrossRef]

Noé, R.

Pearce, M. B.

B. Xu and M. B. Pearce, “Modified Volterra Series Transfer Function,” IEEE Photon. Technol. Lett. 14(1), 47–49 (2002).
[CrossRef]

Peddanarappagari, K. V.

K. V. Peddanarappagari and M. Brandt-Pearce, “Volterra Series Transfer Function of Single-Mode Fibers,” J. Lightwave Technol. 15(12), 2232–2241 (1997).
[CrossRef]

Pfau, T.

Reis, J. D.

Rice, F.

F. Rice, B. Cowley, B. Moran, and M. Rice, “Cramér-Rao Lower Bounds for QAM Phase and Frequency Estimation,” IEEE Trans. Commun. 49(9), 1582–1591 (2001).
[CrossRef]

Rice, M.

F. Rice, B. Cowley, B. Moran, and M. Rice, “Cramér-Rao Lower Bounds for QAM Phase and Frequency Estimation,” IEEE Trans. Commun. 49(9), 1582–1591 (2001).
[CrossRef]

Savory, S. J.

I. Fatadin, D. Ives, and S. J. Savory, “Laser Linewidth Tolerance for 16-QAM Coherent Optical Systems Using QPSK Partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[CrossRef]

Serena, P.

Shibata, N.

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase Mismatch Dependence of Efficiency of Wave Generation Through Four-Wave Mixing in a Single Mode Optical Fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[CrossRef]

Teixeira, A. L.

Waarts, R. G.

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase Mismatch Dependence of Efficiency of Wave Generation Through Four-Wave Mixing in a Single Mode Optical Fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[CrossRef]

Winzer, P. J.

Xu, B.

B. Xu and M. B. Pearce, “Modified Volterra Series Transfer Function,” IEEE Photon. Technol. Lett. 14(1), 47–49 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Shibata, R. P. Braun, and R. G. Waarts, “Phase Mismatch Dependence of Efficiency of Wave Generation Through Four-Wave Mixing in a Single Mode Optical Fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. Xu and M. B. Pearce, “Modified Volterra Series Transfer Function,” IEEE Photon. Technol. Lett. 14(1), 47–49 (2002).
[CrossRef]

I. Fatadin, D. Ives, and S. J. Savory, “Laser Linewidth Tolerance for 16-QAM Coherent Optical Systems Using QPSK Partitioning,” IEEE Photon. Technol. Lett. 22(9), 631–633 (2010).
[CrossRef]

IEEE Trans. Commun. (1)

F. Rice, B. Cowley, B. Moran, and M. Rice, “Cramér-Rao Lower Bounds for QAM Phase and Frequency Estimation,” IEEE Trans. Commun. 49(9), 1582–1591 (2001).
[CrossRef]

J. Lightwave Technol. (6)

Opt. Express (1)

Other (7)

A. Bononi, N. Rossi, and P. Serena, “Transmission Limitations due to Fiber Nonlinearity,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWO7. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OWO7

M. Seimetz, “High-Order Modulation for Optical Fiber Transmission,” in Optical Sciences, W.T. Rhodes, ed. (Springer, Atlanta, GA., 2009).

M. Seimetz, “Laser Linewidth Limitations for Optical Systems with High-Order Modulation Employing Feed Forward Digital Carrier Phase Estimation,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuM2. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OTuM2 .

S. Smolorz, H. Rohde, E. Gottwald, D. W. Smith, and A. Poustie, “Demonstration of a Coherent UDWDM-PON with Real-Time Processing,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPD4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-PDPD4 .

J. D. Reis, D. M. Neves, and A. Teixeira, “Weighting Nonlinearities on Future High Aggregate Data Rate PONs,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.10.P1.109. http://www.opticsinfobase.org/abstract.cfm?URI=ECOC-2011-We.10.P1.109 .

R. A. Shafik, Md.S. Rahman, A.R. Islam, “On the Extended Relationships Among EVM, BER and SNR as Performance Metrics,” in Proceedings of IEEE International Conference on Electrical and Computer Engineering (Institute of Electrical and Electronics Engineers, Dhaka, Bangladesh 2006), pp. 408–411.

K.-P. Ho, “Phase-Modulated Optical Communication Systems,” (Springer, New York, NY., 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Coherent Ultra-Dense WDM based optical access network. LO: local oscillator; LPF: low-pass filter; ADC: analog to digital converter; DSP: digital signal processing; PM: phase modulator. (b) Phase-modulated transmitter. (c) Amplitude-modulated transmitter. (d) SNR Penalty at BER = 10−3 versus ADC resolution in bits for different modulation formats: 625 Mbaud – solid-lines + circles; 1.25 Gbaud – dash-lines + squares. Insets show related constellations at 1.25 Gbaud.

Fig. 2
Fig. 2

SNR Penalty at BER = 10−3 versus linewidth per laser for different modulation formats: 625 Mbaud – solid-lines + circles; 1.25 Gbaud – dash-lines + squares. Insets show related constellations at 1.25 Gbaud. Δf*Ts = 8x10−4 (QPSK); 1.6x10−4 (8PSK); 8x10−5 (16QAM).

Fig. 3
Fig. 3

EVM of the received center channel versus input power per channel for 32x1.25 Gb/s-QPSK. Solid lines: 25 km; Dash lines: 60 km; Dash-dot lines: 100 km. Insets show constellations after 100 km of fiber with blue symbols from SSF simulations and the red ones from the Volterra XPM model.

Fig. 5
Fig. 5

EVM of the received center channel versus input power per channel for 32x2.5 Gb/s-16QAM. Solid lines: 25 km; Dash lines: 60 km; Dash-dot lines: 100 km. Insets show constellations after 100 km of fiber with blue symbols from SSF simulations and the red ones from the Volterra XPM model.

Fig. 4
Fig. 4

EVM of the received center channel versus input power per channel for 32x1.875 Gb/s-8PSK. Solid lines: 25 km; Dash lines: 60 km; Dash-dot lines: 100 km. Insets show constellations after 100 km of fiber with blue symbols from SSF simulations and the red ones from the Volterra XPM model.

Tables (1)

Tables Icon

Table 1 Inter-channel nonlinearities on different modulation formats

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A z + β 1 A t j β 2 2 2 A t 2 β 3 6 3 A t 3 + α 2 A=jγ | A | 2 A.
A(ω,z) H 1 (ω,z)A(ω)+ 1 4 π 2 H 3 ( ω 1 , ω 2 ,ω ω 1 + ω 2 ,z) ×A( ω 1 ) A ( ω 2 )A(ω ω 1 + ω 2 )d ω 1 d ω 2 ,
H 1 (ω,z)= e ( α 2 j β 2 2 ω 2 j β 3 6 ω 3 )z ,
H 3 ( ω 1 , ω 2 ,ω,z)=jγ H 1 (ω,z)× 1exp(αzj β 2 ( ω 1 ω)( ω 1 ω 2 )zj β 3 2 (ω+ ω 2 )( ω 1 ω)( ω 1 ω 2 )z) α+j β 2 ( ω 1 ω)( ω 1 ω 2 )+j β 3 2 (ω+ ω 2 )( ω 1 ω)( ω 1 ω 2 ) ,

Metrics