Abstract

We propose a novel thin solar cell design, integrating plasmonic component with optical layer, for conspicuous performance improvement in organic (P3HT: PCBM) thin film solar cell. Despite the relatively simple structure, the designed solar cell can get strikingly high spectral performance with the short circuit current density (Jsc) enhancement up to 67%; and a nicely large Jsc enhancement over 50% can be easily obtained spanning rather a broad geometric parametric range. The mechanisms responsible for this significant and broadband absorption enhancement as well as the effects of intercalating a plasmonic nanoparticles (NPs) array and an optical layer are theoretically and systematically investigated by finite-difference time-domain calculations (FDTD). The origin of the dramatically increased absorption is believed to be the synergistic effect between 1) the enhanced electric field and forward scattering upon excitation of localized surface plasmon resonance (LSPR) of the NPs, and 2) the favorable redistributions of light field in the device due to the beneficial interference effect mediated by the optical layer. Such a design concept is quite versatile and can be easily extended to other thin film solar cell systems.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells,” Pol. Rev. 48(3), 531–582 (2008).
    [CrossRef]
  2. S. I. Na, B. K. Yu, S. S. Kim, D. Vak, T. S. Kim, J. S. Yeo, and D. Y. Kim, “Fully spray-coated ITO-free organic solar cells for low-cost power generation,” Sol. Energy Mater. Sol. Cells 94(8), 1333–1337 (2010).
    [CrossRef]
  3. P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693–3723 (2003).
    [CrossRef]
  4. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 22(43), 4794–4808 (2010).
    [CrossRef] [PubMed]
  5. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
    [CrossRef] [PubMed]
  6. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
    [CrossRef]
  7. C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
    [CrossRef]
  8. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
    [CrossRef] [PubMed]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  10. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [CrossRef]
  11. C. H. Kim, S.-H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S.-J. Moon, J. H. Bahng, N. A. Kotov, and S.-H. Jin, “Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications,” ACS Nano 5(4), 3319–3325 (2011).
    [CrossRef] [PubMed]
  12. W. L. Bai, Q. Q. Gan, G. F. Song, L. H. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express 18(S4Suppl 4), A620–A630 (2010).
    [CrossRef] [PubMed]
  13. S. J. Tsai, M. Ballarotto, D. B. Romero, W. N. Herman, H. C. Kan, and R. J. Phaneuf, “Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell,” Opt. Express 18(S4Suppl 4), A528–A535 (2010).
    [CrossRef] [PubMed]
  14. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
    [CrossRef]
  15. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [CrossRef]
  16. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
    [CrossRef]
  17. L. Qian, J. Yang, R. Zhou, A. Tang, Y. Zheng, T.-K. Tseng, D. Bera, J. Xue, and P. H. Holloway, “Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime,” J. Mater. Chem. 21(11), 3814–3817 (2011).
    [CrossRef]
  18. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.) 18(5), 572–576 (2006).
    [CrossRef]
  19. F.-C. Chen, J.-L. Wu, and Y. Hung, “Spatial redistribution of the optical field intensity in inverted polymer solar cells,” Appl. Phys. Lett. 96(19), 193304 (2010).
    [CrossRef]
  20. J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study,” Appl. Phys. Lett. 91(11), 113520 (2007).
    [CrossRef]
  21. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).
  22. H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
    [CrossRef]
  23. Q. L. Gu, “Plasmonic metallic nanostructures for efficient absorption enhancement in ultrathin CdTe-based photovoltaic cells,” J. Phys. D Appl. Phys. 43(46), 465101 (2010).
    [CrossRef]
  24. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  25. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  26. J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
    [CrossRef] [PubMed]
  27. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
    [CrossRef] [PubMed]
  28. B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. A. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
    [CrossRef] [PubMed]
  29. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  30. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [CrossRef] [PubMed]
  31. T. A. M. Ferenczi, J. Nelson, C. Belton, A. M. Ballantyne, M. Campoy-Quiles, F. M. Braun, and D. D. C. Bradley, “Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process,” J. Phys. Condens. Matter 20(47), 475203 (2008).
    [CrossRef]

2011 (4)

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

C. H. Kim, S.-H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S.-J. Moon, J. H. Bahng, N. A. Kotov, and S.-H. Jin, “Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications,” ACS Nano 5(4), 3319–3325 (2011).
[CrossRef] [PubMed]

M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
[CrossRef]

L. Qian, J. Yang, R. Zhou, A. Tang, Y. Zheng, T.-K. Tseng, D. Bera, J. Xue, and P. H. Holloway, “Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime,” J. Mater. Chem. 21(11), 3814–3817 (2011).
[CrossRef]

2010 (8)

F.-C. Chen, J.-L. Wu, and Y. Hung, “Spatial redistribution of the optical field intensity in inverted polymer solar cells,” Appl. Phys. Lett. 96(19), 193304 (2010).
[CrossRef]

W. L. Bai, Q. Q. Gan, G. F. Song, L. H. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express 18(S4Suppl 4), A620–A630 (2010).
[CrossRef] [PubMed]

S. J. Tsai, M. Ballarotto, D. B. Romero, W. N. Herman, H. C. Kan, and R. J. Phaneuf, “Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell,” Opt. Express 18(S4Suppl 4), A528–A535 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

S. I. Na, B. K. Yu, S. S. Kim, D. Vak, T. S. Kim, J. S. Yeo, and D. Y. Kim, “Fully spray-coated ITO-free organic solar cells for low-cost power generation,” Sol. Energy Mater. Sol. Cells 94(8), 1333–1337 (2010).
[CrossRef]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Q. L. Gu, “Plasmonic metallic nanostructures for efficient absorption enhancement in ultrathin CdTe-based photovoltaic cells,” J. Phys. D Appl. Phys. 43(46), 465101 (2010).
[CrossRef]

2009 (2)

H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17(12), 10195–10205 (2009).
[CrossRef] [PubMed]

2008 (7)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

T. A. M. Ferenczi, J. Nelson, C. Belton, A. M. Ballantyne, M. Campoy-Quiles, F. M. Braun, and D. D. C. Bradley, “Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process,” J. Phys. Condens. Matter 20(47), 475203 (2008).
[CrossRef]

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells,” Pol. Rev. 48(3), 531–582 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

2007 (3)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study,” Appl. Phys. Lett. 91(11), 113520 (2007).
[CrossRef]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

2006 (2)

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. A. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[CrossRef] [PubMed]

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.) 18(5), 572–576 (2006).
[CrossRef]

2004 (1)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

2003 (2)

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693–3723 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Akimov, Y. A.

Atkinson, A. L.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

Ausman, L. K.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

Bahng, J. H.

C. H. Kim, S.-H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S.-J. Moon, J. H. Bahng, N. A. Kotov, and S.-H. Jin, “Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications,” ACS Nano 5(4), 3319–3325 (2011).
[CrossRef] [PubMed]

Bai, W. L.

Ballantyne, A. M.

T. A. M. Ferenczi, J. Nelson, C. Belton, A. M. Ballantyne, M. Campoy-Quiles, F. M. Braun, and D. D. C. Bradley, “Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process,” J. Phys. Condens. Matter 20(47), 475203 (2008).
[CrossRef]

Ballarotto, M.

Barbu, I.

J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study,” Appl. Phys. Lett. 91(11), 113520 (2007).
[CrossRef]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

Bartoli, F.

Belton, C.

T. A. M. Ferenczi, J. Nelson, C. Belton, A. M. Ballantyne, M. Campoy-Quiles, F. M. Braun, and D. D. C. Bradley, “Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process,” J. Phys. Condens. Matter 20(47), 475203 (2008).
[CrossRef]

Bera, D.

L. Qian, J. Yang, R. Zhou, A. Tang, Y. Zheng, T.-K. Tseng, D. Bera, J. Xue, and P. H. Holloway, “Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime,” J. Mater. Chem. 21(11), 3814–3817 (2011).
[CrossRef]

Bienstman, P.

H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Blom, P. W. M.

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells,” Pol. Rev. 48(3), 531–582 (2008).
[CrossRef]

Bradley, D. D. C.

T. A. M. Ferenczi, J. Nelson, C. Belton, A. M. Ballantyne, M. Campoy-Quiles, F. M. Braun, and D. D. C. Bradley, “Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process,” J. Phys. Condens. Matter 20(47), 475203 (2008).
[CrossRef]

Braun, F. M.

T. A. M. Ferenczi, J. Nelson, C. Belton, A. M. Ballantyne, M. Campoy-Quiles, F. M. Braun, and D. D. C. Bradley, “Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process,” J. Phys. Condens. Matter 20(47), 475203 (2008).
[CrossRef]

Campoy-Quiles, M.

T. A. M. Ferenczi, J. Nelson, C. Belton, A. M. Ballantyne, M. Campoy-Quiles, F. M. Braun, and D. D. C. Bradley, “Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process,” J. Phys. Condens. Matter 20(47), 475203 (2008).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Cha, S.-H.

C. H. Kim, S.-H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S.-J. Moon, J. H. Bahng, N. A. Kotov, and S.-H. Jin, “Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications,” ACS Nano 5(4), 3319–3325 (2011).
[CrossRef] [PubMed]

Chen, F.-C.

F.-C. Chen, J.-L. Wu, and Y. Hung, “Spatial redistribution of the optical field intensity in inverted polymer solar cells,” Appl. Phys. Lett. 96(19), 193304 (2010).
[CrossRef]

Chen, L. H.

De Boer, B.

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells,” Pol. Rev. 48(3), 531–582 (2008).
[CrossRef]

Demir, H. V.

M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
[CrossRef]

Fan, S. H.

C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Ferenczi, T. A. M.

T. A. M. Ferenczi, J. Nelson, C. Belton, A. M. Ballantyne, M. Campoy-Quiles, F. M. Braun, and D. D. C. Bradley, “Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process,” J. Phys. Condens. Matter 20(47), 475203 (2008).
[CrossRef]

Ferry, V. E.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693–3723 (2003).
[CrossRef]

Gan, Q. Q.

Gilot, J.

J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study,” Appl. Phys. Lett. 91(11), 113520 (2007).
[CrossRef]

Gong, X.

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.) 18(5), 572–576 (2006).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Gu, Q. L.

Q. L. Gu, “Plasmonic metallic nanostructures for efficient absorption enhancement in ultrathin CdTe-based photovoltaic cells,” J. Phys. D Appl. Phys. 43(46), 465101 (2010).
[CrossRef]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Heeger, A. J.

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.) 18(5), 572–576 (2006).
[CrossRef]

Herman, W. N.

Holloway, P. H.

L. Qian, J. Yang, R. Zhou, A. Tang, Y. Zheng, T.-K. Tseng, D. Bera, J. Xue, and P. H. Holloway, “Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime,” J. Mater. Chem. 21(11), 3814–3817 (2011).
[CrossRef]

Hummelen, J. C.

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells,” Pol. Rev. 48(3), 531–582 (2008).
[CrossRef]

Hung, Y.

F.-C. Chen, J.-L. Wu, and Y. Hung, “Spatial redistribution of the optical field intensity in inverted polymer solar cells,” Appl. Phys. Lett. 96(19), 193304 (2010).
[CrossRef]

Im, S. H.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. A. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[CrossRef] [PubMed]

Janssen, R. A. J.

J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study,” Appl. Phys. Lett. 91(11), 113520 (2007).
[CrossRef]

Jin, S.-H.

C. H. Kim, S.-H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S.-J. Moon, J. H. Bahng, N. A. Kotov, and S.-H. Jin, “Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications,” ACS Nano 5(4), 3319–3325 (2011).
[CrossRef] [PubMed]

Kafafi, Z.

Kan, H. C.

Kim, C. H.

C. H. Kim, S.-H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S.-J. Moon, J. H. Bahng, N. A. Kotov, and S.-H. Jin, “Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications,” ACS Nano 5(4), 3319–3325 (2011).
[CrossRef] [PubMed]

Kim, D. Y.

S. I. Na, B. K. Yu, S. S. Kim, D. Vak, T. S. Kim, J. S. Yeo, and D. Y. Kim, “Fully spray-coated ITO-free organic solar cells for low-cost power generation,” Sol. Energy Mater. Sol. Cells 94(8), 1333–1337 (2010).
[CrossRef]

Kim, J. Y.

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.) 18(5), 572–576 (2006).
[CrossRef]

Kim, S. C.

C. H. Kim, S.-H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S.-J. Moon, J. H. Bahng, N. A. Kotov, and S.-H. Jin, “Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications,” ACS Nano 5(4), 3319–3325 (2011).
[CrossRef] [PubMed]

Kim, S. H.

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.) 18(5), 572–576 (2006).
[CrossRef]

Kim, S. S.

S. I. Na, B. K. Yu, S. S. Kim, D. Vak, T. S. Kim, J. S. Yeo, and D. Y. Kim, “Fully spray-coated ITO-free organic solar cells for low-cost power generation,” Sol. Energy Mater. Sol. Cells 94(8), 1333–1337 (2010).
[CrossRef]

Kim, T. S.

S. I. Na, B. K. Yu, S. S. Kim, D. Vak, T. S. Kim, J. S. Yeo, and D. Y. Kim, “Fully spray-coated ITO-free organic solar cells for low-cost power generation,” Sol. Energy Mater. Sol. Cells 94(8), 1333–1337 (2010).
[CrossRef]

Koh, W. S.

Kotov, N. A.

C. H. Kim, S.-H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S.-J. Moon, J. H. Bahng, N. A. Kotov, and S.-H. Jin, “Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications,” ACS Nano 5(4), 3319–3325 (2011).
[CrossRef] [PubMed]

Kroon, R.

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells,” Pol. Rev. 48(3), 531–582 (2008).
[CrossRef]

Lee, H. H.

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.) 18(5), 572–576 (2006).
[CrossRef]

Lee, J.

C. H. Kim, S.-H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S.-J. Moon, J. H. Bahng, N. A. Kotov, and S.-H. Jin, “Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications,” ACS Nano 5(4), 3319–3325 (2011).
[CrossRef] [PubMed]

Lee, J. Y.

C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Lee, K.

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.) 18(5), 572–576 (2006).
[CrossRef]

Lenes, M.

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells,” Pol. Rev. 48(3), 531–582 (2008).
[CrossRef]

Li, J.

C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Li, S.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

Li, Z. Y.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. A. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[CrossRef] [PubMed]

Ma, W. L.

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.) 18(5), 572–576 (2006).
[CrossRef]

Maes, B.

H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

McLellan, J.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. A. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[CrossRef] [PubMed]

McMahon, J. M.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

Min, C. J.

C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Moon, S.-J.

C. H. Kim, S.-H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S.-J. Moon, J. H. Bahng, N. A. Kotov, and S.-H. Jin, “Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications,” ACS Nano 5(4), 3319–3325 (2011).
[CrossRef] [PubMed]

Morfa, A. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Munday, J. N.

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Na, S. I.

S. I. Na, B. K. Yu, S. S. Kim, D. Vak, T. S. Kim, J. S. Yeo, and D. Y. Kim, “Fully spray-coated ITO-free organic solar cells for low-cost power generation,” Sol. Energy Mater. Sol. Cells 94(8), 1333–1337 (2010).
[CrossRef]

Nelson, J.

T. A. M. Ferenczi, J. Nelson, C. Belton, A. M. Ballantyne, M. Campoy-Quiles, F. M. Braun, and D. D. C. Bradley, “Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process,” J. Phys. Condens. Matter 20(47), 475203 (2008).
[CrossRef]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Okyay, A. K.

M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
[CrossRef]

Ostrikov, K.

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Peumans, P.

C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693–3723 (2003).
[CrossRef]

Phaneuf, R. J.

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Pinchuk, A. O.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Qian, L.

L. Qian, J. Yang, R. Zhou, A. Tang, Y. Zheng, T.-K. Tseng, D. Bera, J. Xue, and P. H. Holloway, “Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime,” J. Mater. Chem. 21(11), 3814–3817 (2011).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Reilly, T. H.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Romero, D. B.

Romero, M. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Rowlen, K. L.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Schatz, G. C.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

Sefunc, M. A.

M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
[CrossRef]

Shen, H. H.

H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Shin, W. S.

C. H. Kim, S.-H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S.-J. Moon, J. H. Bahng, N. A. Kotov, and S.-H. Jin, “Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications,” ACS Nano 5(4), 3319–3325 (2011).
[CrossRef] [PubMed]

Siekkinen, A.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. A. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[CrossRef] [PubMed]

Song, G. F.

Song, M.

C. H. Kim, S.-H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S.-J. Moon, J. H. Bahng, N. A. Kotov, and S.-H. Jin, “Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications,” ACS Nano 5(4), 3319–3325 (2011).
[CrossRef] [PubMed]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Tang, A.

L. Qian, J. Yang, R. Zhou, A. Tang, Y. Zheng, T.-K. Tseng, D. Bera, J. Xue, and P. H. Holloway, “Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime,” J. Mater. Chem. 21(11), 3814–3817 (2011).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Tsai, S. J.

Tseng, T.-K.

L. Qian, J. Yang, R. Zhou, A. Tang, Y. Zheng, T.-K. Tseng, D. Bera, J. Xue, and P. H. Holloway, “Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime,” J. Mater. Chem. 21(11), 3814–3817 (2011).
[CrossRef]

Vak, D.

S. I. Na, B. K. Yu, S. S. Kim, D. Vak, T. S. Kim, J. S. Yeo, and D. Y. Kim, “Fully spray-coated ITO-free organic solar cells for low-cost power generation,” Sol. Energy Mater. Sol. Cells 94(8), 1333–1337 (2010).
[CrossRef]

van de Lagemaat, J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Veronis, G.

C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

Wienk, M. M.

J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study,” Appl. Phys. Lett. 91(11), 113520 (2007).
[CrossRef]

Wiley, B. J.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. A. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[CrossRef] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Wu, J.-L.

F.-C. Chen, J.-L. Wu, and Y. Hung, “Spatial redistribution of the optical field intensity in inverted polymer solar cells,” Appl. Phys. Lett. 96(19), 193304 (2010).
[CrossRef]

Xia, Y. A.

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. A. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[CrossRef] [PubMed]

Xue, J.

L. Qian, J. Yang, R. Zhou, A. Tang, Y. Zheng, T.-K. Tseng, D. Bera, J. Xue, and P. H. Holloway, “Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime,” J. Mater. Chem. 21(11), 3814–3817 (2011).
[CrossRef]

Yakimov, A.

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693–3723 (2003).
[CrossRef]

Yang, J.

L. Qian, J. Yang, R. Zhou, A. Tang, Y. Zheng, T.-K. Tseng, D. Bera, J. Xue, and P. H. Holloway, “Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime,” J. Mater. Chem. 21(11), 3814–3817 (2011).
[CrossRef]

Yeo, J. S.

S. I. Na, B. K. Yu, S. S. Kim, D. Vak, T. S. Kim, J. S. Yeo, and D. Y. Kim, “Fully spray-coated ITO-free organic solar cells for low-cost power generation,” Sol. Energy Mater. Sol. Cells 94(8), 1333–1337 (2010).
[CrossRef]

Yu, B. K.

S. I. Na, B. K. Yu, S. S. Kim, D. Vak, T. S. Kim, J. S. Yeo, and D. Y. Kim, “Fully spray-coated ITO-free organic solar cells for low-cost power generation,” Sol. Energy Mater. Sol. Cells 94(8), 1333–1337 (2010).
[CrossRef]

Zhao, J.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

Zheng, Y.

L. Qian, J. Yang, R. Zhou, A. Tang, Y. Zheng, T.-K. Tseng, D. Bera, J. Xue, and P. H. Holloway, “Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime,” J. Mater. Chem. 21(11), 3814–3817 (2011).
[CrossRef]

Zhou, R.

L. Qian, J. Yang, R. Zhou, A. Tang, Y. Zheng, T.-K. Tseng, D. Bera, J. Xue, and P. H. Holloway, “Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime,” J. Mater. Chem. 21(11), 3814–3817 (2011).
[CrossRef]

Acc. Chem. Res. (1)

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

ACS Nano (1)

C. H. Kim, S.-H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S.-J. Moon, J. H. Bahng, N. A. Kotov, and S.-H. Jin, “Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications,” ACS Nano 5(4), 3319–3325 (2011).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. (Deerfield Beach Fla.) 18(5), 572–576 (2006).
[CrossRef]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Volumetric plasmonic resonator architecture for thin-film solar cells,” Appl. Phys. Lett. 98(9), 093117 (2011).
[CrossRef]

C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96(13), 133302 (2010).
[CrossRef]

F.-C. Chen, J.-L. Wu, and Y. Hung, “Spatial redistribution of the optical field intensity in inverted polymer solar cells,” Appl. Phys. Lett. 96(19), 193304 (2010).
[CrossRef]

J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study,” Appl. Phys. Lett. 91(11), 113520 (2007).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

J. Appl. Phys. (4)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93(7), 3693–3723 (2003).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

H. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

J. Mater. Chem. (1)

L. Qian, J. Yang, R. Zhou, A. Tang, Y. Zheng, T.-K. Tseng, D. Bera, J. Xue, and P. H. Holloway, “Hybrid polymer-CdSe solar cells with a ZnO nanoparticle buffer layer for improved efficiency and lifetime,” J. Mater. Chem. 21(11), 3814–3817 (2011).
[CrossRef]

J. Phys. Chem. B (1)

B. J. Wiley, S. H. Im, Z. Y. Li, J. McLellan, A. Siekkinen, and Y. A. Xia, “Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis,” J. Phys. Chem. B 110(32), 15666–15675 (2006).
[CrossRef] [PubMed]

J. Phys. Condens. Matter (1)

T. A. M. Ferenczi, J. Nelson, C. Belton, A. M. Ballantyne, M. Campoy-Quiles, F. M. Braun, and D. D. C. Bradley, “Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process,” J. Phys. Condens. Matter 20(47), 475203 (2008).
[CrossRef]

J. Phys. D Appl. Phys. (1)

Q. L. Gu, “Plasmonic metallic nanostructures for efficient absorption enhancement in ultrathin CdTe-based photovoltaic cells,” J. Phys. D Appl. Phys. 43(46), 465101 (2010).
[CrossRef]

Nano Lett. (2)

J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett. 11(6), 2195–2201 (2011).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. Lett. (1)

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

Pol. Rev. (1)

R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. De Boer, “Small bandgap polymers for organic solar cells,” Pol. Rev. 48(3), 531–582 (2008).
[CrossRef]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

S. I. Na, B. K. Yu, S. S. Kim, D. Vak, T. S. Kim, J. S. Yeo, and D. Y. Kim, “Fully spray-coated ITO-free organic solar cells for low-cost power generation,” Sol. Energy Mater. Sol. Cells 94(8), 1333–1337 (2010).
[CrossRef]

Other (2)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagrams for a reference solar cell (a), a plasmonic solar cell without an optical layer (b), and a plasmonic solar cell integrated with an optical layer design (c).

Fig. 2
Fig. 2

Maps of short circuit current density (Jsc) enhancement factors (EFs) versus array period (P) and Ag NPs’ radius (r) for (a) plasmonic solar cells without an optical layer and (b) plasmonic solar cells integrated with an optical layer of thickness h = 25 nm and refractive index n = 2.1. The Jsc for the reference solar cell is 6.612 mA/cm2.

Fig. 3
Fig. 3

(a) and (b): The absorptions of the Ag NPs array (a) and the active layer (b) for a series of devices with only the plasmonic design as illustrated in Fig. 1(b). P is fixed at 450 nm and r is varied from 30 to 120 nm. (c) The absorptions of the active layer for devices with only the optical layer design (n = 2.1, with variable h). (d) The absorptions of the active layer in four representative cells, i.e., the reference cell (navy dashed), only the plasmonic design (black solid), merely the optical layer design (brown solid), and the integrated design (blue solid). P = 450 nm, r = 80 nm and h = 25 nm are respectively chosen. The dashed line in (b-d) represents the absorption of the active layer in the reference cell. The AM1.5 solar spectrum is also plotted as red solid lines in (c) and (d) for comparison.

Fig. 4
Fig. 4

The electric intensity distribution profiles at λ = 550 nm in devices with only a plasmonic design (a, b), with an integrated design (c, d) and in the reference cell (e). A dimensionless electric intensity is adopted which is defined as the absolute value normalized to that of the incident light, and that >5 has been cut off for clarity. A NPs array of P = 450 nm and r = 80 nm and an optical layer of h = 25 nm are adopted, respectively. (f) The average electric field intensity profiles in the active layer at λ = 550 nm for the devices. The horizontal solid lines in (a-e) indicate the interfaces at z = 0 for air/ITO, z = −50 nm for ITO/PEDOT:PSS, z = −70 nm for PEDOT:PSS/P3HT:PCBM, z = −110 nm for P3HT:PCBM/Ag or P3HT:PCBM/optical layer, and z = −135 nm for optical layer/Ag electrode.

Fig. 5
Fig. 5

The average electric intensity distribution patterns along z-axis versus wavelength for the reference solar cell (a) and for integrated devices with a series of optical layer thickness: h = 0 nm (b), 10 nm (c), 25 nm (d), 40 nm (e) and 50 nm (f). The array period and the radius of the Ag NPs in (b-f) is 450 and 80 nm, respectively. The horizontal solid lines indicate the interfaces as described in Fig. 4.

Fig. 6
Fig. 6

The normalized average absorption patterns along z-axis versus wavelength for the reference solar cell (a) and for integrated devices with a series of optical layer thickness: h = 0 nm (b), 10 nm (c), 25 nm (d), 40 nm (e) and 50 nm (f). The array period and the radius of the Ag NPs in (b-f) is 450 and 80 nm, respectively. The horizontal solid lines indicate the interfaces as described in Fig. 4.

Fig. 7
Fig. 7

The effect of incorporating an optical layer on the Jsc for the plasmonic solar cell (black square and line, P = 450 nm and r = 80 nm) and the reference cell (red circle and line).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P loss = 1 2 ω|E | 2 Im(ε),
A(λ)= P abs P in = P loss dV P in ,
J sc =e λ hc A ac (λ) I AM1.5 (λ)dλ,
|E(z;λ) | 2 = |E(x,y,z;λ) | 2 dxdy/ dxdy,

Metrics