Abstract

Large quantities of silica nanowires were synthesized through thermal treatment of silicon wafer in the atmosphere of N2/H2(5%) under 1200 °C with Cu as catalyst. These nanowires grew to form a natural bright-white mat, which showed highly diffusive reflectivity over the UV-visible range, with more than 60% at the whole range and up to 88% at 350 nm. The utilization of silica nanowires in diffusive coating on the reflector cup of LED is demonstrated, which shows greatly improved light distribution comparing with the specular reflector cup. It is expected that these nanowires can be promising coating material for optoelectronic applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
    [CrossRef]
  2. C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32(02), 99–108 (2007).
    [CrossRef]
  3. L. J. Chen, “Silicon nanowires: the key building block for future electronic devices,” J. Mater. Chem. 17(44), 4639–4643 (2007).
    [CrossRef]
  4. D. R. Kim, C. H. Lee, and X. Zheng, “Probing flow velocity with silicon nanowire sensors,” Nano Lett. 9(5), 1984–1988 (2009).
    [CrossRef] [PubMed]
  5. Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang, “Temperature controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders,” J. Phys. Chem. B 105(13), 2507–2514 (2001).
    [CrossRef]
  6. R. W. G. Wyckoff, Crystal Structures (Wiley-Interscience, NewYork, 1965).
  7. G. Bilalbegović, “Electronic properties of silica nanowires,” J. Phys. Condens. Matter 18(15), 3829–3836 (2006).
    [CrossRef]
  8. A. Mills, “LED 2005 illuminates,” III–Vs Rev. 18(9), 30–35 (2005–2006).
  9. T. Taguchi, “Japanese semiconductor lighting project based on ultraviolet LED and phosphor system,” Proc. SPIE 4445, 5–12 (2001).
    [CrossRef]
  10. R. L. Woods, A. L. Rashed, J. M. Benavides, and R. H. Webb, “A low-power, LED-based, high-brightness anomaloscope,” Vision Res. 46(22), 3775–3781 (2006).
    [CrossRef] [PubMed]
  11. H. Iwanaga, A. Amano, F. Aiga, K. Harada, and M. Oguchi, “Development of ultraviolet LED devices containing europium (III) complexes in fluorescence layer,” J. Alloy. Comp. 408–412, 921–925 (2006).
    [CrossRef]
  12. A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sens. Actuators B Chem. 111–112, 230–241 (2005).
    [CrossRef]
  13. X. D. Wang, Y. Li, H. Yang, X. Y. Yi, L. C. Wang, G. H. Wang, F. H. Yang, and J. M. Li, “Design and optimization of dielectric optical coatings for GaN based high bright LEDs,” Proc. SPIE 6841, 68410E (2007).
    [CrossRef]
  14. E. Stefanov, B. S. Shelton, H. S. Venugopalan, T. Zhang, and I. Eliashevich, “Optimizing the external light extraction of nitride LEDs,” Proc. SPIE 4776, 223–234 (2002).
  15. D. Fuhrmann, C. Netzel, U. Rossow, A. Hangleiter, G. Ade, and P. Hinze, “Optimization scheme for the quantum efficiency of GaInN-based green-light-emitting diodes,” Appl. Phys. Lett. 88(7), 071105 (2006).
    [CrossRef]
  16. Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124(8), 1817–1822 (2002).
    [CrossRef] [PubMed]
  17. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
    [CrossRef] [PubMed]
  18. R. A. Street, W. S. Wong, and C. Paulson, “Analytic model for diffuse reflectivity of silicon nanowire mats,” Nano Lett. 9(10), 3494–3497 (2009).
    [CrossRef] [PubMed]
  19. R. A. Street, P. Qi, R. Lujan, and W. S. Wong, “Reflectivity of disordered silicon nanowires,” Appl. Phys. Lett. 93(16), 163109 (2008).
    [CrossRef]

2009 (2)

D. R. Kim, C. H. Lee, and X. Zheng, “Probing flow velocity with silicon nanowire sensors,” Nano Lett. 9(5), 1984–1988 (2009).
[CrossRef] [PubMed]

R. A. Street, W. S. Wong, and C. Paulson, “Analytic model for diffuse reflectivity of silicon nanowire mats,” Nano Lett. 9(10), 3494–3497 (2009).
[CrossRef] [PubMed]

2008 (2)

R. A. Street, P. Qi, R. Lujan, and W. S. Wong, “Reflectivity of disordered silicon nanowires,” Appl. Phys. Lett. 93(16), 163109 (2008).
[CrossRef]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

2007 (3)

X. D. Wang, Y. Li, H. Yang, X. Y. Yi, L. C. Wang, G. H. Wang, F. H. Yang, and J. M. Li, “Design and optimization of dielectric optical coatings for GaN based high bright LEDs,” Proc. SPIE 6841, 68410E (2007).
[CrossRef]

C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32(02), 99–108 (2007).
[CrossRef]

L. J. Chen, “Silicon nanowires: the key building block for future electronic devices,” J. Mater. Chem. 17(44), 4639–4643 (2007).
[CrossRef]

2006 (4)

G. Bilalbegović, “Electronic properties of silica nanowires,” J. Phys. Condens. Matter 18(15), 3829–3836 (2006).
[CrossRef]

R. L. Woods, A. L. Rashed, J. M. Benavides, and R. H. Webb, “A low-power, LED-based, high-brightness anomaloscope,” Vision Res. 46(22), 3775–3781 (2006).
[CrossRef] [PubMed]

H. Iwanaga, A. Amano, F. Aiga, K. Harada, and M. Oguchi, “Development of ultraviolet LED devices containing europium (III) complexes in fluorescence layer,” J. Alloy. Comp. 408–412, 921–925 (2006).
[CrossRef]

D. Fuhrmann, C. Netzel, U. Rossow, A. Hangleiter, G. Ade, and P. Hinze, “Optimization scheme for the quantum efficiency of GaInN-based green-light-emitting diodes,” Appl. Phys. Lett. 88(7), 071105 (2006).
[CrossRef]

2005 (1)

A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sens. Actuators B Chem. 111–112, 230–241 (2005).
[CrossRef]

2003 (1)

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

2002 (2)

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124(8), 1817–1822 (2002).
[CrossRef] [PubMed]

E. Stefanov, B. S. Shelton, H. S. Venugopalan, T. Zhang, and I. Eliashevich, “Optimizing the external light extraction of nitride LEDs,” Proc. SPIE 4776, 223–234 (2002).

2001 (2)

T. Taguchi, “Japanese semiconductor lighting project based on ultraviolet LED and phosphor system,” Proc. SPIE 4445, 5–12 (2001).
[CrossRef]

Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang, “Temperature controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders,” J. Phys. Chem. B 105(13), 2507–2514 (2001).
[CrossRef]

Ade, G.

D. Fuhrmann, C. Netzel, U. Rossow, A. Hangleiter, G. Ade, and P. Hinze, “Optimization scheme for the quantum efficiency of GaInN-based green-light-emitting diodes,” Appl. Phys. Lett. 88(7), 071105 (2006).
[CrossRef]

Aiga, F.

H. Iwanaga, A. Amano, F. Aiga, K. Harada, and M. Oguchi, “Development of ultraviolet LED devices containing europium (III) complexes in fluorescence layer,” J. Alloy. Comp. 408–412, 921–925 (2006).
[CrossRef]

Algra, R. E.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Amano, A.

H. Iwanaga, A. Amano, F. Aiga, K. Harada, and M. Oguchi, “Development of ultraviolet LED devices containing europium (III) complexes in fluorescence layer,” J. Alloy. Comp. 408–412, 921–925 (2006).
[CrossRef]

Bakkers, E. P. A. M.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Banani, N.

A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sens. Actuators B Chem. 111–112, 230–241 (2005).
[CrossRef]

Benavides, J. M.

R. L. Woods, A. L. Rashed, J. M. Benavides, and R. H. Webb, “A low-power, LED-based, high-brightness anomaloscope,” Vision Res. 46(22), 3775–3781 (2006).
[CrossRef] [PubMed]

Bilalbegovic, G.

G. Bilalbegović, “Electronic properties of silica nanowires,” J. Phys. Condens. Matter 18(15), 3829–3836 (2006).
[CrossRef]

Chen, L. J.

L. J. Chen, “Silicon nanowires: the key building block for future electronic devices,” J. Mater. Chem. 17(44), 4639–4643 (2007).
[CrossRef]

Dai, Z. R.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124(8), 1817–1822 (2002).
[CrossRef] [PubMed]

Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang, “Temperature controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders,” J. Phys. Chem. B 105(13), 2507–2514 (2001).
[CrossRef]

Eliashevich, I.

E. Stefanov, B. S. Shelton, H. S. Venugopalan, T. Zhang, and I. Eliashevich, “Optimizing the external light extraction of nitride LEDs,” Proc. SPIE 4776, 223–234 (2002).

Fuhrmann, D.

D. Fuhrmann, C. Netzel, U. Rossow, A. Hangleiter, G. Ade, and P. Hinze, “Optimization scheme for the quantum efficiency of GaInN-based green-light-emitting diodes,” Appl. Phys. Lett. 88(7), 071105 (2006).
[CrossRef]

Gates, B.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Hangleiter, A.

D. Fuhrmann, C. Netzel, U. Rossow, A. Hangleiter, G. Ade, and P. Hinze, “Optimization scheme for the quantum efficiency of GaInN-based green-light-emitting diodes,” Appl. Phys. Lett. 88(7), 071105 (2006).
[CrossRef]

Harada, K.

H. Iwanaga, A. Amano, F. Aiga, K. Harada, and M. Oguchi, “Development of ultraviolet LED devices containing europium (III) complexes in fluorescence layer,” J. Alloy. Comp. 408–412, 921–925 (2006).
[CrossRef]

Hinze, P.

D. Fuhrmann, C. Netzel, U. Rossow, A. Hangleiter, G. Ade, and P. Hinze, “Optimization scheme for the quantum efficiency of GaInN-based green-light-emitting diodes,” Appl. Phys. Lett. 88(7), 071105 (2006).
[CrossRef]

Iwanaga, H.

H. Iwanaga, A. Amano, F. Aiga, K. Harada, and M. Oguchi, “Development of ultraviolet LED devices containing europium (III) complexes in fluorescence layer,” J. Alloy. Comp. 408–412, 921–925 (2006).
[CrossRef]

Kim, D. R.

D. R. Kim, C. H. Lee, and X. Zheng, “Probing flow velocity with silicon nanowire sensors,” Nano Lett. 9(5), 1984–1988 (2009).
[CrossRef] [PubMed]

Kim, F.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Lagendijk, A.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Lee, C. H.

D. R. Kim, C. H. Lee, and X. Zheng, “Probing flow velocity with silicon nanowire sensors,” Nano Lett. 9(5), 1984–1988 (2009).
[CrossRef] [PubMed]

Lee, S. T.

Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang, “Temperature controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders,” J. Phys. Chem. B 105(13), 2507–2514 (2001).
[CrossRef]

Li, J. M.

X. D. Wang, Y. Li, H. Yang, X. Y. Yi, L. C. Wang, G. H. Wang, F. H. Yang, and J. M. Li, “Design and optimization of dielectric optical coatings for GaN based high bright LEDs,” Proc. SPIE 6841, 68410E (2007).
[CrossRef]

Li, Y.

X. D. Wang, Y. Li, H. Yang, X. Y. Yi, L. C. Wang, G. H. Wang, F. H. Yang, and J. M. Li, “Design and optimization of dielectric optical coatings for GaN based high bright LEDs,” Proc. SPIE 6841, 68410E (2007).
[CrossRef]

Lieber, C. M.

C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32(02), 99–108 (2007).
[CrossRef]

Liu, M.

A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sens. Actuators B Chem. 111–112, 230–241 (2005).
[CrossRef]

Lujan, R.

R. A. Street, P. Qi, R. Lujan, and W. S. Wong, “Reflectivity of disordered silicon nanowires,” Appl. Phys. Lett. 93(16), 163109 (2008).
[CrossRef]

Ma, C.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124(8), 1817–1822 (2002).
[CrossRef] [PubMed]

Marquardt, B.

A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sens. Actuators B Chem. 111–112, 230–241 (2005).
[CrossRef]

Marx, S.

A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sens. Actuators B Chem. 111–112, 230–241 (2005).
[CrossRef]

Mayers, B.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Mills, A.

A. Mills, “LED 2005 illuminates,” III–Vs Rev. 18(9), 30–35 (2005–2006).

Moe, A. E.

A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sens. Actuators B Chem. 111–112, 230–241 (2005).
[CrossRef]

Muskens, O. L.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Netzel, C.

D. Fuhrmann, C. Netzel, U. Rossow, A. Hangleiter, G. Ade, and P. Hinze, “Optimization scheme for the quantum efficiency of GaInN-based green-light-emitting diodes,” Appl. Phys. Lett. 88(7), 071105 (2006).
[CrossRef]

Oguchi, M.

H. Iwanaga, A. Amano, F. Aiga, K. Harada, and M. Oguchi, “Development of ultraviolet LED devices containing europium (III) complexes in fluorescence layer,” J. Alloy. Comp. 408–412, 921–925 (2006).
[CrossRef]

Pan, Z. W.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124(8), 1817–1822 (2002).
[CrossRef] [PubMed]

Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang, “Temperature controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders,” J. Phys. Chem. B 105(13), 2507–2514 (2001).
[CrossRef]

Paulson, C.

R. A. Street, W. S. Wong, and C. Paulson, “Analytic model for diffuse reflectivity of silicon nanowire mats,” Nano Lett. 9(10), 3494–3497 (2009).
[CrossRef] [PubMed]

Qi, P.

R. A. Street, P. Qi, R. Lujan, and W. S. Wong, “Reflectivity of disordered silicon nanowires,” Appl. Phys. Lett. 93(16), 163109 (2008).
[CrossRef]

Rashed, A. L.

R. L. Woods, A. L. Rashed, J. M. Benavides, and R. H. Webb, “A low-power, LED-based, high-brightness anomaloscope,” Vision Res. 46(22), 3775–3781 (2006).
[CrossRef] [PubMed]

Rivas, J. G.

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

Rossow, U.

D. Fuhrmann, C. Netzel, U. Rossow, A. Hangleiter, G. Ade, and P. Hinze, “Optimization scheme for the quantum efficiency of GaInN-based green-light-emitting diodes,” Appl. Phys. Lett. 88(7), 071105 (2006).
[CrossRef]

Shelton, B. S.

E. Stefanov, B. S. Shelton, H. S. Venugopalan, T. Zhang, and I. Eliashevich, “Optimizing the external light extraction of nitride LEDs,” Proc. SPIE 4776, 223–234 (2002).

Stefanov, E.

E. Stefanov, B. S. Shelton, H. S. Venugopalan, T. Zhang, and I. Eliashevich, “Optimizing the external light extraction of nitride LEDs,” Proc. SPIE 4776, 223–234 (2002).

Street, R. A.

R. A. Street, W. S. Wong, and C. Paulson, “Analytic model for diffuse reflectivity of silicon nanowire mats,” Nano Lett. 9(10), 3494–3497 (2009).
[CrossRef] [PubMed]

R. A. Street, P. Qi, R. Lujan, and W. S. Wong, “Reflectivity of disordered silicon nanowires,” Appl. Phys. Lett. 93(16), 163109 (2008).
[CrossRef]

Sun, Y. G.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Taguchi, T.

T. Taguchi, “Japanese semiconductor lighting project based on ultraviolet LED and phosphor system,” Proc. SPIE 4445, 5–12 (2001).
[CrossRef]

Venugopalan, H. S.

E. Stefanov, B. S. Shelton, H. S. Venugopalan, T. Zhang, and I. Eliashevich, “Optimizing the external light extraction of nitride LEDs,” Proc. SPIE 4776, 223–234 (2002).

Wang, G. H.

X. D. Wang, Y. Li, H. Yang, X. Y. Yi, L. C. Wang, G. H. Wang, F. H. Yang, and J. M. Li, “Design and optimization of dielectric optical coatings for GaN based high bright LEDs,” Proc. SPIE 6841, 68410E (2007).
[CrossRef]

Wang, L. C.

X. D. Wang, Y. Li, H. Yang, X. Y. Yi, L. C. Wang, G. H. Wang, F. H. Yang, and J. M. Li, “Design and optimization of dielectric optical coatings for GaN based high bright LEDs,” Proc. SPIE 6841, 68410E (2007).
[CrossRef]

Wang, X. D.

X. D. Wang, Y. Li, H. Yang, X. Y. Yi, L. C. Wang, G. H. Wang, F. H. Yang, and J. M. Li, “Design and optimization of dielectric optical coatings for GaN based high bright LEDs,” Proc. SPIE 6841, 68410E (2007).
[CrossRef]

Wang, Z. L.

C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32(02), 99–108 (2007).
[CrossRef]

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124(8), 1817–1822 (2002).
[CrossRef] [PubMed]

Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang, “Temperature controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders,” J. Phys. Chem. B 105(13), 2507–2514 (2001).
[CrossRef]

Webb, R. H.

R. L. Woods, A. L. Rashed, J. M. Benavides, and R. H. Webb, “A low-power, LED-based, high-brightness anomaloscope,” Vision Res. 46(22), 3775–3781 (2006).
[CrossRef] [PubMed]

Wilson, D. M.

A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sens. Actuators B Chem. 111–112, 230–241 (2005).
[CrossRef]

Wong, W. S.

R. A. Street, W. S. Wong, and C. Paulson, “Analytic model for diffuse reflectivity of silicon nanowire mats,” Nano Lett. 9(10), 3494–3497 (2009).
[CrossRef] [PubMed]

R. A. Street, P. Qi, R. Lujan, and W. S. Wong, “Reflectivity of disordered silicon nanowires,” Appl. Phys. Lett. 93(16), 163109 (2008).
[CrossRef]

Woods, R. L.

R. L. Woods, A. L. Rashed, J. M. Benavides, and R. H. Webb, “A low-power, LED-based, high-brightness anomaloscope,” Vision Res. 46(22), 3775–3781 (2006).
[CrossRef] [PubMed]

Wu, Y. Y.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Xia, Y. N.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Xu, L.

Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang, “Temperature controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders,” J. Phys. Chem. B 105(13), 2507–2514 (2001).
[CrossRef]

Yan, H. Q.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Yang, F. H.

X. D. Wang, Y. Li, H. Yang, X. Y. Yi, L. C. Wang, G. H. Wang, F. H. Yang, and J. M. Li, “Design and optimization of dielectric optical coatings for GaN based high bright LEDs,” Proc. SPIE 6841, 68410E (2007).
[CrossRef]

Yang, H.

X. D. Wang, Y. Li, H. Yang, X. Y. Yi, L. C. Wang, G. H. Wang, F. H. Yang, and J. M. Li, “Design and optimization of dielectric optical coatings for GaN based high bright LEDs,” Proc. SPIE 6841, 68410E (2007).
[CrossRef]

Yang, P. D.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Yi, X. Y.

X. D. Wang, Y. Li, H. Yang, X. Y. Yi, L. C. Wang, G. H. Wang, F. H. Yang, and J. M. Li, “Design and optimization of dielectric optical coatings for GaN based high bright LEDs,” Proc. SPIE 6841, 68410E (2007).
[CrossRef]

Yin, Y. D.

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Zhang, T.

E. Stefanov, B. S. Shelton, H. S. Venugopalan, T. Zhang, and I. Eliashevich, “Optimizing the external light extraction of nitride LEDs,” Proc. SPIE 4776, 223–234 (2002).

Zheng, X.

D. R. Kim, C. H. Lee, and X. Zheng, “Probing flow velocity with silicon nanowire sensors,” Nano Lett. 9(5), 1984–1988 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 353–389 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

D. Fuhrmann, C. Netzel, U. Rossow, A. Hangleiter, G. Ade, and P. Hinze, “Optimization scheme for the quantum efficiency of GaInN-based green-light-emitting diodes,” Appl. Phys. Lett. 88(7), 071105 (2006).
[CrossRef]

R. A. Street, P. Qi, R. Lujan, and W. S. Wong, “Reflectivity of disordered silicon nanowires,” Appl. Phys. Lett. 93(16), 163109 (2008).
[CrossRef]

III–Vs Rev. (1)

A. Mills, “LED 2005 illuminates,” III–Vs Rev. 18(9), 30–35 (2005–2006).

J. Alloy. Comp. (1)

H. Iwanaga, A. Amano, F. Aiga, K. Harada, and M. Oguchi, “Development of ultraviolet LED devices containing europium (III) complexes in fluorescence layer,” J. Alloy. Comp. 408–412, 921–925 (2006).
[CrossRef]

J. Am. Chem. Soc. (1)

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124(8), 1817–1822 (2002).
[CrossRef] [PubMed]

J. Mater. Chem. (1)

L. J. Chen, “Silicon nanowires: the key building block for future electronic devices,” J. Mater. Chem. 17(44), 4639–4643 (2007).
[CrossRef]

J. Phys. Chem. B (1)

Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang, “Temperature controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders,” J. Phys. Chem. B 105(13), 2507–2514 (2001).
[CrossRef]

J. Phys. Condens. Matter (1)

G. Bilalbegović, “Electronic properties of silica nanowires,” J. Phys. Condens. Matter 18(15), 3829–3836 (2006).
[CrossRef]

MRS Bull. (1)

C. M. Lieber and Z. L. Wang, “Functional nanowires,” MRS Bull. 32(02), 99–108 (2007).
[CrossRef]

Nano Lett. (3)

D. R. Kim, C. H. Lee, and X. Zheng, “Probing flow velocity with silicon nanowire sensors,” Nano Lett. 9(5), 1984–1988 (2009).
[CrossRef] [PubMed]

O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett. 8(9), 2638–2642 (2008).
[CrossRef] [PubMed]

R. A. Street, W. S. Wong, and C. Paulson, “Analytic model for diffuse reflectivity of silicon nanowire mats,” Nano Lett. 9(10), 3494–3497 (2009).
[CrossRef] [PubMed]

Proc. SPIE (3)

X. D. Wang, Y. Li, H. Yang, X. Y. Yi, L. C. Wang, G. H. Wang, F. H. Yang, and J. M. Li, “Design and optimization of dielectric optical coatings for GaN based high bright LEDs,” Proc. SPIE 6841, 68410E (2007).
[CrossRef]

E. Stefanov, B. S. Shelton, H. S. Venugopalan, T. Zhang, and I. Eliashevich, “Optimizing the external light extraction of nitride LEDs,” Proc. SPIE 4776, 223–234 (2002).

T. Taguchi, “Japanese semiconductor lighting project based on ultraviolet LED and phosphor system,” Proc. SPIE 4445, 5–12 (2001).
[CrossRef]

Sens. Actuators B Chem. (1)

A. E. Moe, S. Marx, N. Banani, M. Liu, B. Marquardt, and D. M. Wilson, “Improvements in LED-based fluorescence analysis systems,” Sens. Actuators B Chem. 111–112, 230–241 (2005).
[CrossRef]

Vision Res. (1)

R. L. Woods, A. L. Rashed, J. M. Benavides, and R. H. Webb, “A low-power, LED-based, high-brightness anomaloscope,” Vision Res. 46(22), 3775–3781 (2006).
[CrossRef] [PubMed]

Other (1)

R. W. G. Wyckoff, Crystal Structures (Wiley-Interscience, NewYork, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Process flow for synthesis of silica nanowires. (b) Schematic of tube-quartz furnace. (c) Temperature and atmosphere control curve.

Fig. 2
Fig. 2

SEM micrographs of the as-grown SiO2 nanowires from (a) plan view, (b) cross-sectional view. (c) TEM image of the obtained nanowires, with the EDX spectrum as an inset; (d) HRTEM electron micrograph of a specific nanowire and the corresponding SAED patterns as an inset.

Fig. 3
Fig. 3

(a) Measured reflectivity of silica nanowire mat on silicon substrate. The inset shows the photographic image of silica nanowire mat on silicon wafer. (b) Chromaticity triangle depicting the coordinates of the SiO2 nanowires.

Fig. 4
Fig. 4

(a) Reflectivity of the specular reflector at normal incident angle, with the photographic image of specular reflector cup as an inset. (b) The cross-sectional image of the diffusive reflector cup. (c) The SEM image of nanowire distribution taken from the local coating layer.

Fig. 5
Fig. 5

(a) Schematic diagram of UV LED package. (b) and (c) are photographic images of LED lamps before and after energized, respectively, with the diffusive one at the left side and specular at the right side. (d) Total emission intensity measured on UV LED lamps employing a specular and a diffusive reflector cup.

Fig. 6
Fig. 6

(a) and (b) are emitting spectra of specular and diffusive LED lamps, respectively, taken from different angles. (c) Measured angular dependence of peak intensity for a specular and a diffusive LED lamp.

Metrics