Abstract

Coherent and directional emission at 1.55 μm from a PbSe colloidal quantum dot electroluminescent device on silicon is demonstrated. The quantum dots are sandwiched between a metallic mirror and a distributed Bragg reflector and are chemically treated in order to increase the electronic coupling. Electrons and holes are injected through ZnO nanocrystals and indium tin oxide, respectively. The measured electroluminescence exhibits a minimum linewidth of ~3.1 nm corresponding to a cavity quality factor of ~500 at a low injection current density of 3 A/cm2, and highly directional emission characteristics.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007).
    [CrossRef]
  2. J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92(26), 261110 (2008).
    [CrossRef]
  3. S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, “A solution-processed 1.53 mum quantum dot laser with temperature-invariant emission wavelength,” Opt. Express 14(8), 3273–3281 (2006).
    [CrossRef] [PubMed]
  4. J. Heo, T. Zhu, C. Zhang, J. Xu, and P. Bhattacharya, “Electroluminescence from silicon-based photonic crystal microcavities with PbSe quantum dots,” Opt. Lett. 35(4), 547–549 (2010).
    [CrossRef] [PubMed]
  5. J. J. Choi, Y.-F. Lim, M. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
    [CrossRef] [PubMed]
  6. J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, “Synthesis and surface modification of PbSe/PbS core–shell nanocrystals for potential device applications,” Nanotechnology 17(21), 5428–5434 (2006).
    [CrossRef]
  7. W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516 (2005).
    [CrossRef] [PubMed]
  8. F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen, “Electronic memory effects in diodes of zinc oxide nanoparticles in a matrix of polystyrene or poly(3-hexylthiophene),” J. Appl. Phys. 102(8), 083701 (2007).
    [CrossRef]
  9. A. Wood, M. Giersig, M. Hilgendorff, A. Vilas-Campos, L. M. Liz-Marzan, and P. Mulvaney, “Size effects in ZnO: the cluster to quantum dot transition,” Aust. J. Chem. 56(10), 1051–1057 (2003).
    [CrossRef]
  10. B. S. Mashford, T.-L. Nguyen, G. J. Wilson, and P. Mulvaney, “All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing,” J. Mater. Chem. 20(1), 167–172 (2009).
    [CrossRef]
  11. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]
  12. J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
    [CrossRef]

2010 (1)

2009 (2)

J. J. Choi, Y.-F. Lim, M. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

B. S. Mashford, T.-L. Nguyen, G. J. Wilson, and P. Mulvaney, “All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing,” J. Mater. Chem. 20(1), 167–172 (2009).
[CrossRef]

2008 (2)

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[CrossRef]

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92(26), 261110 (2008).
[CrossRef]

2007 (2)

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007).
[CrossRef]

F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen, “Electronic memory effects in diodes of zinc oxide nanoparticles in a matrix of polystyrene or poly(3-hexylthiophene),” J. Appl. Phys. 102(8), 083701 (2007).
[CrossRef]

2006 (2)

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, “Synthesis and surface modification of PbSe/PbS core–shell nanocrystals for potential device applications,” Nanotechnology 17(21), 5428–5434 (2006).
[CrossRef]

S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, “A solution-processed 1.53 mum quantum dot laser with temperature-invariant emission wavelength,” Opt. Express 14(8), 3273–3281 (2006).
[CrossRef] [PubMed]

2005 (1)

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516 (2005).
[CrossRef] [PubMed]

2003 (1)

A. Wood, M. Giersig, M. Hilgendorff, A. Vilas-Campos, L. M. Liz-Marzan, and P. Mulvaney, “Size effects in ZnO: the cluster to quantum dot transition,” Aust. J. Chem. 56(10), 1051–1057 (2003).
[CrossRef]

1998 (1)

Abruña, H. D.

J. J. Choi, Y.-F. Lim, M. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Bartnik, A. C.

J. J. Choi, Y.-F. Lim, M. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Bawendi, M. G.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[CrossRef]

Beek, W. J. E.

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516 (2005).
[CrossRef] [PubMed]

Bhattacharya, P.

J. Heo, T. Zhu, C. Zhang, J. Xu, and P. Bhattacharya, “Electroluminescence from silicon-based photonic crystal microcavities with PbSe quantum dots,” Opt. Lett. 35(4), 547–549 (2010).
[CrossRef] [PubMed]

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92(26), 261110 (2008).
[CrossRef]

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007).
[CrossRef]

Bulovic, V.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[CrossRef]

Caruge, J. M.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[CrossRef]

Cauchi, S.

Choi, J. J.

J. J. Choi, Y.-F. Lim, M. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Cui, D.

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, “Synthesis and surface modification of PbSe/PbS core–shell nanocrystals for potential device applications,” Nanotechnology 17(21), 5428–5434 (2006).
[CrossRef]

Djurisic, A. B.

Elazar, J. M.

Giersig, M.

A. Wood, M. Giersig, M. Hilgendorff, A. Vilas-Campos, L. M. Liz-Marzan, and P. Mulvaney, “Size effects in ZnO: the cluster to quantum dot transition,” Aust. J. Chem. 56(10), 1051–1057 (2003).
[CrossRef]

Goedhart, A.

J. J. Choi, Y.-F. Lim, M. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Halpert, J. E.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[CrossRef]

Hanrath, T.

J. J. Choi, Y.-F. Lim, M. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Heo, J.

J. Heo, T. Zhu, C. Zhang, J. Xu, and P. Bhattacharya, “Electroluminescence from silicon-based photonic crystal microcavities with PbSe quantum dots,” Opt. Lett. 35(4), 547–549 (2010).
[CrossRef] [PubMed]

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92(26), 261110 (2008).
[CrossRef]

Hilgendorff, M.

A. Wood, M. Giersig, M. Hilgendorff, A. Vilas-Campos, L. M. Liz-Marzan, and P. Mulvaney, “Size effects in ZnO: the cluster to quantum dot transition,” Aust. J. Chem. 56(10), 1051–1057 (2003).
[CrossRef]

Hoogland, S.

Howard, I.

Hyun, B.-R.

J. J. Choi, Y.-F. Lim, M. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Ilic, R.

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92(26), 261110 (2008).
[CrossRef]

Janssen, R. A. J.

F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen, “Electronic memory effects in diodes of zinc oxide nanoparticles in a matrix of polystyrene or poly(3-hexylthiophene),” J. Appl. Phys. 102(8), 083701 (2007).
[CrossRef]

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516 (2005).
[CrossRef] [PubMed]

Kemerink, M.

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516 (2005).
[CrossRef] [PubMed]

Levina, L.

Liang, Z.

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, “Synthesis and surface modification of PbSe/PbS core–shell nanocrystals for potential device applications,” Nanotechnology 17(21), 5428–5434 (2006).
[CrossRef]

Lim, Y.-F.

J. J. Choi, Y.-F. Lim, M. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Liz-Marzan, L. M.

A. Wood, M. Giersig, M. Hilgendorff, A. Vilas-Campos, L. M. Liz-Marzan, and P. Mulvaney, “Size effects in ZnO: the cluster to quantum dot transition,” Aust. J. Chem. 56(10), 1051–1057 (2003).
[CrossRef]

Majewski, M. L.

Malliaras, G. G.

J. J. Choi, Y.-F. Lim, M. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Mashford, B. S.

B. S. Mashford, T.-L. Nguyen, G. J. Wilson, and P. Mulvaney, “All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing,” J. Mater. Chem. 20(1), 167–172 (2009).
[CrossRef]

Meskers, S. C. J.

F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen, “Electronic memory effects in diodes of zinc oxide nanoparticles in a matrix of polystyrene or poly(3-hexylthiophene),” J. Appl. Phys. 102(8), 083701 (2007).
[CrossRef]

Mi, Z.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007).
[CrossRef]

Mulvaney, P.

B. S. Mashford, T.-L. Nguyen, G. J. Wilson, and P. Mulvaney, “All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing,” J. Mater. Chem. 20(1), 167–172 (2009).
[CrossRef]

A. Wood, M. Giersig, M. Hilgendorff, A. Vilas-Campos, L. M. Liz-Marzan, and P. Mulvaney, “Size effects in ZnO: the cluster to quantum dot transition,” Aust. J. Chem. 56(10), 1051–1057 (2003).
[CrossRef]

Nguyen, T.-L.

B. S. Mashford, T.-L. Nguyen, G. J. Wilson, and P. Mulvaney, “All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing,” J. Mater. Chem. 20(1), 167–172 (2009).
[CrossRef]

Oh, M.

J. J. Choi, Y.-F. Lim, M. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Paradee, G.

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, “Synthesis and surface modification of PbSe/PbS core–shell nanocrystals for potential device applications,” Nanotechnology 17(21), 5428–5434 (2006).
[CrossRef]

Rakic, A. D.

Santiago-Berrios, M. B.

J. J. Choi, Y.-F. Lim, M. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Sargent, E. H.

Sukhovatkin, V.

Sun, L.

J. J. Choi, Y.-F. Lim, M. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Topolancik, J.

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92(26), 261110 (2008).
[CrossRef]

Verbakel, F.

F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen, “Electronic memory effects in diodes of zinc oxide nanoparticles in a matrix of polystyrene or poly(3-hexylthiophene),” J. Appl. Phys. 102(8), 083701 (2007).
[CrossRef]

Vilas-Campos, A.

A. Wood, M. Giersig, M. Hilgendorff, A. Vilas-Campos, L. M. Liz-Marzan, and P. Mulvaney, “Size effects in ZnO: the cluster to quantum dot transition,” Aust. J. Chem. 56(10), 1051–1057 (2003).
[CrossRef]

Vollmer, F.

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92(26), 261110 (2008).
[CrossRef]

Wang, A. Y.

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, “Synthesis and surface modification of PbSe/PbS core–shell nanocrystals for potential device applications,” Nanotechnology 17(21), 5428–5434 (2006).
[CrossRef]

Wang, Q.

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, “Synthesis and surface modification of PbSe/PbS core–shell nanocrystals for potential device applications,” Nanotechnology 17(21), 5428–5434 (2006).
[CrossRef]

Wienk, M. M.

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516 (2005).
[CrossRef] [PubMed]

Wilson, G. J.

B. S. Mashford, T.-L. Nguyen, G. J. Wilson, and P. Mulvaney, “All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing,” J. Mater. Chem. 20(1), 167–172 (2009).
[CrossRef]

Wise, F. W.

J. J. Choi, Y.-F. Lim, M. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Wood, A.

A. Wood, M. Giersig, M. Hilgendorff, A. Vilas-Campos, L. M. Liz-Marzan, and P. Mulvaney, “Size effects in ZnO: the cluster to quantum dot transition,” Aust. J. Chem. 56(10), 1051–1057 (2003).
[CrossRef]

Wood, V.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[CrossRef]

Wu, Z.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007).
[CrossRef]

Xu, J.

J. Heo, T. Zhu, C. Zhang, J. Xu, and P. Bhattacharya, “Electroluminescence from silicon-based photonic crystal microcavities with PbSe quantum dots,” Opt. Lett. 35(4), 547–549 (2010).
[CrossRef] [PubMed]

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92(26), 261110 (2008).
[CrossRef]

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007).
[CrossRef]

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, “Synthesis and surface modification of PbSe/PbS core–shell nanocrystals for potential device applications,” Nanotechnology 17(21), 5428–5434 (2006).
[CrossRef]

Xu, S.

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, “Synthesis and surface modification of PbSe/PbS core–shell nanocrystals for potential device applications,” Nanotechnology 17(21), 5428–5434 (2006).
[CrossRef]

Yang, J.

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92(26), 261110 (2008).
[CrossRef]

Yang, X.

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516 (2005).
[CrossRef] [PubMed]

Zhang, C.

Zhu, T.

J. Heo, T. Zhu, C. Zhang, J. Xu, and P. Bhattacharya, “Electroluminescence from silicon-based photonic crystal microcavities with PbSe quantum dots,” Opt. Lett. 35(4), 547–549 (2010).
[CrossRef] [PubMed]

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92(26), 261110 (2008).
[CrossRef]

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007).
[CrossRef]

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, “Synthesis and surface modification of PbSe/PbS core–shell nanocrystals for potential device applications,” Nanotechnology 17(21), 5428–5434 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007).
[CrossRef]

J. Yang, J. Heo, T. Zhu, J. Xu, J. Topolancik, F. Vollmer, R. Ilic, and P. Bhattacharya, “Enhanced photoluminescence from embedded PbSe colloidal quantum dots in silicon-based random photonic crystal microcavities,” Appl. Phys. Lett. 92(26), 261110 (2008).
[CrossRef]

Aust. J. Chem. (1)

A. Wood, M. Giersig, M. Hilgendorff, A. Vilas-Campos, L. M. Liz-Marzan, and P. Mulvaney, “Size effects in ZnO: the cluster to quantum dot transition,” Aust. J. Chem. 56(10), 1051–1057 (2003).
[CrossRef]

J. Appl. Phys. (1)

F. Verbakel, S. C. J. Meskers, and R. A. J. Janssen, “Electronic memory effects in diodes of zinc oxide nanoparticles in a matrix of polystyrene or poly(3-hexylthiophene),” J. Appl. Phys. 102(8), 083701 (2007).
[CrossRef]

J. Mater. Chem. (1)

B. S. Mashford, T.-L. Nguyen, G. J. Wilson, and P. Mulvaney, “All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing,” J. Mater. Chem. 20(1), 167–172 (2009).
[CrossRef]

J. Phys. Chem. B (1)

W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, “Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells,” J. Phys. Chem. B 109(19), 9505–9516 (2005).
[CrossRef] [PubMed]

Nano Lett. (1)

J. J. Choi, Y.-F. Lim, M. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, “PbSe nanocrystal excitonic solar cells,” Nano Lett. 9(11), 3749–3755 (2009).
[CrossRef] [PubMed]

Nanotechnology (1)

J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, and A. Y. Wang, “Synthesis and surface modification of PbSe/PbS core–shell nanocrystals for potential device applications,” Nanotechnology 17(21), 5428–5434 (2006).
[CrossRef]

Nat. Photonics (1)

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the device heterostructure fabricated on silicon substrate. The light emitting region consisting of ITO, PEDOT:PSS, and ZnO, is clad by Ag and the bottom DBR which is made of SiO2 and amorphous-Si; (b) numerically calculated electric field intensity (blue line) in the device with refractive index profile (green line). The maximum electric field spatially coincides with a layer of PbSe QDs, which is highlighted.

Fig. 2
Fig. 2

Measured current density-voltage characteristics of the fabricated device in log-log plot. The increase of the slope at 2.3 V indicates the onset of carrier injection into the QDs. The inset shows J-V characteristics in linear scale, which exhibiting a good rectifying behavior.

Fig. 3
Fig. 3

(a) Room temperature electroluminescence spectra from the control sample without a DBR and two devices with different cavity sizes. Resonant modes are tuned by varying the cavity size. The narrowest linewidth is ~3.1 nm at λ = 1563.1 nm; (b) angular emission characteristics recorded from the device with DBR at angles ranging from 0 to 45 degrees with respect to the cavity axis. The Lambertian pattern is also shown for comparison.

Fig. 4
Fig. 4

Measured voltage-current density and light-current density characteristics of the device. The integrated light output increases linearly with current. The extrapolation of the linear fit indicates a turn-on voltage of ~2.4 V.

Metrics