Abstract

We exploit the large third order nonlinear susceptibility (χ(3) or “Chi 3”) of tantalum pentoxide (Ta2O5) planar waveguides and realize broadband optical parametric conversion on-chip. We use a co-linear pump-probe configuration and observe stimulated four wave parametric conversion when seeding either in the visible or the infrared. Pumping at 800 nm we observe parametric conversion over a broad spectral range with the parametric idler output spanning from 1200 nm to 1600 nm in infrared wavelengths and from 555 nm to 600 nm in visible wavelengths. Our demonstration of on-chip stimulated four wave parametric conversion introduces Ta2O5 as a novel material for broadband integrated nonlinear photonic circuit applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic Press, 2006), p. xvi, 561 pp.
  2. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008), p. xix, 613 pp.
  3. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Opt. Lett. 27(19), 1675–1677 (2002).
    [CrossRef] [PubMed]
  4. T. Sloanes, K. McEwan, B. Lowans, and L. Michaille, “Optimisation of high average power optical parametric generation using a photonic crystal fiber,” Opt. Express 16(24), 19724–19733 (2008).
    [CrossRef] [PubMed]
  5. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [CrossRef] [PubMed]
  6. M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
    [CrossRef]
  7. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18(9), 1046–1048 (2006).
    [CrossRef]
  8. M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
    [CrossRef]
  9. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
    [CrossRef] [PubMed]
  10. F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
    [CrossRef] [PubMed]
  11. M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
    [CrossRef]
  12. J. Van Erps, F. Luan, M. D. Pelusi, T. Iredale, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640-Gb/s data using four-wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides,” J. Lightwave Technol. 28(2), 209–215 (2010).
    [CrossRef]
  13. I. W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express 14(25), 12380–12387 (2006).
    [CrossRef] [PubMed]
  14. J. I. Dadap, N. C. Panoiu, X. Chen, I. W. Hsieh, X. Liu, C.-Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood., “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express 16(2), 1280–1299 (2008).
    [CrossRef] [PubMed]
  15. E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783–784 (2002).
    [CrossRef]
  16. R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, “Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses,” Opt. Express 14(24), 11702–11708 (2006).
    [CrossRef] [PubMed]
  17. R. Y. Chen, M. D. B. Charlton, and P. G. Lagoudakis, “Reference free Chi 3 dispersion measurements in planar tantalum pentoxide waveguides,” Proc. SPIE 7420, 74200D (2009).
    [CrossRef]
  18. R. Y. Chen, M. D. B. Charlton, and P. G. Lagoudakis, “Chi 3 dispersion in planar tantalum pentoxide waveguides in the telecommunications window,” Opt. Lett. 34(7), 1135–1137 (2009).
    [CrossRef] [PubMed]
  19. R. Y. Chen, M. D. B. Charlton, and P. G. Lagoudakis, “Experimental demonstration of on-chip optical parametric oscillation in planar tantalum pentoxide waveguides,” in Optics Photonics 2010 (SPIE), (San Diego, USA, 2010).
  20. C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep. 22(6), 269–322 (1998).
    [CrossRef]
  21. J. D. Mills, T. Chaipiboonwong, W. S. Brocklesby, M. D. B. Charlton, M. E. Zoorob, C. Netti, and J. J. Baumberg, “Observation of the developing optical continuum along a nonlinear waveguide,” Opt. Lett. 31(16), 2459–2461 (2006).
    [CrossRef] [PubMed]
  22. W. Kaiser, Ultrashort Laser Pulses and Applications, Topics in applied physics (Springer, 1988), 424 pp.

2010

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

J. Van Erps, F. Luan, M. D. Pelusi, T. Iredale, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640-Gb/s data using four-wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides,” J. Lightwave Technol. 28(2), 209–215 (2010).
[CrossRef]

2009

2008

2007

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

2006

2002

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Opt. Lett. 27(19), 1675–1677 (2002).
[CrossRef] [PubMed]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783–784 (2002).
[CrossRef]

1998

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep. 22(6), 269–322 (1998).
[CrossRef]

Autran, J. L.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep. 22(6), 269–322 (1998).
[CrossRef]

Balland, B.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep. 22(6), 269–322 (1998).
[CrossRef]

Baumberg, J. J.

Brocklesby, W. S.

Bufetov, I. A.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783–784 (2002).
[CrossRef]

Bulla, B.

M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Bulla, D. A.

J. Van Erps, F. Luan, M. D. Pelusi, T. Iredale, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640-Gb/s data using four-wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides,” J. Lightwave Technol. 28(2), 209–215 (2010).
[CrossRef]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

Carlie, N.

Chaipiboonwong, T.

Chaneliere, C.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep. 22(6), 269–322 (1998).
[CrossRef]

Charlton, M. D. B.

Chen, R. Y.

R. Y. Chen, M. D. B. Charlton, and P. G. Lagoudakis, “Reference free Chi 3 dispersion measurements in planar tantalum pentoxide waveguides,” Proc. SPIE 7420, 74200D (2009).
[CrossRef]

R. Y. Chen, M. D. B. Charlton, and P. G. Lagoudakis, “Chi 3 dispersion in planar tantalum pentoxide waveguides in the telecommunications window,” Opt. Lett. 34(7), 1135–1137 (2009).
[CrossRef] [PubMed]

Chen, X.

Choi, D. Y.

Chou, C.-Y.

Churbanov, M. F.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783–784 (2002).
[CrossRef]

Couzi, M.

Dadap, J. I.

Delfyett, P.

Devine, R. A. B.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep. 22(6), 269–322 (1998).
[CrossRef]

Dianov, E. M.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783–784 (2002).
[CrossRef]

Duk-Yong Choi, D. A. P.

M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Dulkeith, E.

Eggleton, B. J.

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

J. Van Erps, F. Luan, M. D. Pelusi, T. Iredale, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640-Gb/s data using four-wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides,” J. Lightwave Technol. 28(2), 209–215 (2010).
[CrossRef]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

Fiorentino, M.

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Frolov, A. A.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783–784 (2002).
[CrossRef]

Fukuda, H.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18(9), 1046–1048 (2006).
[CrossRef]

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Gai, X.

Green, W. M. J.

Hsieh, I. W.

Iredale, T.

Itabashi, S.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18(9), 1046–1048 (2006).
[CrossRef]

Kumar, P.

Lagoudakis, P. G.

R. Y. Chen, M. D. B. Charlton, and P. G. Lagoudakis, “Chi 3 dispersion in planar tantalum pentoxide waveguides in the telecommunications window,” Opt. Lett. 34(7), 1135–1137 (2009).
[CrossRef] [PubMed]

R. Y. Chen, M. D. B. Charlton, and P. G. Lagoudakis, “Reference free Chi 3 dispersion measurements in planar tantalum pentoxide waveguides,” Proc. SPIE 7420, 74200D (2009).
[CrossRef]

Lamont, M. R. E.

Lamont, S.

M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Libin Fu, E.

M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Lipson, M.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Liu, X.

Lowans, B.

Luan, F.

Luther-Davies,

M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Luther-Davies, B.

Madden,

M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Madden, S.

Magi, M. R. E.

M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

Mashinsky, V. M.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783–784 (2002).
[CrossRef]

McEwan, K.

McNab, S. J.

Michaille, L.

Mills, J. D.

Netti, C.

Osgood, R. M.

Panoiu, N. C.

Pelusi, M. D.

J. Van Erps, F. Luan, M. D. Pelusi, T. Iredale, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, H. Thienpont, and B. J. Eggleton, “High-resolution optical sampling of 640-Gb/s data using four-wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides,” J. Lightwave Technol. 28(2), 209–215 (2010).
[CrossRef]

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

Petit, L.

Plotnichenko, V. G.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783–784 (2002).
[CrossRef]

Richardson, K.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Sekaric, L.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Opt. Lett. 27(19), 1675–1677 (2002).
[CrossRef] [PubMed]

Shoji, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18(9), 1046–1048 (2006).
[CrossRef]

Sloanes, T.

Snopatin, G. E.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783–784 (2002).
[CrossRef]

Stegeman, G.

Stegeman, R.

Ta’eed, V. G.

M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

Thienpont, H.

Tsuchizawa, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18(9), 1046–1048 (2006).
[CrossRef]

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Van Erps, J.

Vlasov, Y. A.

Watanabe, T.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18(9), 1046–1048 (2006).
[CrossRef]

Windeler, R. S.

Xia, F.

Yamada, K.

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18(9), 1046–1048 (2006).
[CrossRef]

Zoorob, M. E.

Electron. Lett.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibres,” Electron. Lett. 38(15), 783–784 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

M. D. Pelusi, F. Luan, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip,” IEEE Photon. Technol. Lett. 22(1), 3–5 (2010).
[CrossRef]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, “All-optical efficient wavelength conversion using silicon photonic wire waveguide,” IEEE Photon. Technol. Lett. 18(9), 1046–1048 (2006).
[CrossRef]

J. Lightwave Technol.

Mater. Sci. Eng. Rep.

C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mater. Sci. Eng. Rep. 22(6), 269–322 (1998).
[CrossRef]

Nature

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Opt. Express

R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, “Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses,” Opt. Express 14(24), 11702–11708 (2006).
[CrossRef] [PubMed]

I. W. Hsieh, X. Chen, J. I. Dadap, N. C. Panoiu, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express 14(25), 12380–12387 (2006).
[CrossRef] [PubMed]

J. I. Dadap, N. C. Panoiu, X. Chen, I. W. Hsieh, X. Liu, C.-Y. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood., “Nonlinear-optical phase modification in dispersion-engineered Si photonic wires,” Opt. Express 16(2), 1280–1299 (2008).
[CrossRef] [PubMed]

T. Sloanes, K. McEwan, B. Lowans, and L. Michaille, “Optimisation of high average power optical parametric generation using a photonic crystal fiber,” Opt. Express 16(24), 19724–19733 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

R. Y. Chen, M. D. B. Charlton, and P. G. Lagoudakis, “Reference free Chi 3 dispersion measurements in planar tantalum pentoxide waveguides,” Proc. SPIE 7420, 74200D (2009).
[CrossRef]

Other

R. Y. Chen, M. D. B. Charlton, and P. G. Lagoudakis, “Experimental demonstration of on-chip optical parametric oscillation in planar tantalum pentoxide waveguides,” in Optics Photonics 2010 (SPIE), (San Diego, USA, 2010).

K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic Press, 2006), p. xvi, 561 pp.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008), p. xix, 613 pp.

W. Kaiser, Ultrashort Laser Pulses and Applications, Topics in applied physics (Springer, 1988), 424 pp.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cross-sectional scanning electron microscope images of 7 mm long waveguide sample facets after damage test experiments. All waveguides have thickness of 500 nm and widths as follows: 6.6 µm (G1), 9.41 µm (G2), 9.85 µm (G3), and 11.65 µm (G4).

Fig. 2
Fig. 2

Pump-probe experimental setup for demonstration of optical four-wave parametric conversion process.

Fig. 3
Fig. 3

a) Pump power dependence of parametric output for 601 nm seed; b) Spectrally integrated intensity of output vs. pump power (dots), the solid line is a fit to the pump squared dependence; c) Output wavelength dependence on seed wavelength (dots), the solid line plots the energy conservation imposed on the parametric process.

Fig. 4
Fig. 4

a) Output seed power dependence for 601 nm seed and 800 nm pump at 12.5 mW; b) Spectrally integrated intensity of output vs. seed power (dots), the solid line is a guide to the eye.

Fig. 5
Fig. 5

a) Pump power dependence of output for 1550 nm seed; b) spectrally integrated intensity of output (excluding the THG) vs. pump power (dots), the solid line is fit to the pump squared dependence; c) output wavelength dependence on seed wavelength (dots), the solid line is the phase matching imposed on the parametric process. The background image shows spectral intensity of the output.

Fig. 6
Fig. 6

Illustrations of the co-linear parametric conversion process in planar waveguides.

Fig. 7
Fig. 7

Time dependent measured idler spectrum from tested waveguides (intensity in false colour) for both visible and IR seeds with time delay tuned over a range of 100 fs with respect to zero-time delay. a) guide G1 seeded at 577 nm; b) guide G3 seeded at 577 nm; c) guide G4 seeded at 577 nm; d) guide G2 seeded at 1300 nm.

Fig. 8
Fig. 8

a) output mode images from stimulated four-wave parametric process; b) dispersion measurements using a time-of-flight (Kerr gate) setup superimposed with the simulations of the refractive index for 12 supported modes in the examined waveguide (G2). The left hand axis relates to the colour map and shows change in measured effective mode index calculated from time-of-flight as a function of wavelength. The right hand axis relates to the lines, and displays calculated effective mode index as a function of wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω output =2 ω pump ω seed
I output =C | χ (3) | 2 I pump 2 I seed l 2 [ sin(Δkl/2) Δkl/2 ] 2

Metrics