Abstract

The development of suitable recording media for applications such as holographic optical elements and holographic data storage are of significant research and commercial interest. In this paper, a photopolymer material developed by Bayer MaterialScience is examined using various optical techniques and then characterised using the Non-local Photo-polymerization Driven Diffusion model. This material demonstrates the capabilities of a new class of photopolymer offering high index modulation, full colour recording, high light sensitivity and environmental stability. One key result of this study is the material’s high spatial frequency resolution, indicating a very low non-local effect, thus qualifying it as a very good storage medium.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24(7), 487–489 (1999).
    [CrossRef] [PubMed]
  2. L. Dhar, A. Hale, K. Kurtis, M. Schnoes, M. Tackitt, W. Wilson, A. Hill, M. Schilling, H. Katz, and A. Olsen, “Photopolymer recording media for high density data storage,” in Conference Digest, Optical Data Storage, IEEE, 158–160, (2000).
  3. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design, fabrication, and performance of preferential-order volume grating waveguide couplers,” Appl. Opt. 39(8), 1223–1232 (2000).
    [CrossRef] [PubMed]
  4. A. Sato, M. Scepanovic, and R. K. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt. 42(5), 778–784 (2003).
    [CrossRef] [PubMed]
  5. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44(16), 3197–3207 (2005).
    [CrossRef] [PubMed]
  6. T. D. Milster, “Horizons for optical storage,” Optics and Photonics News 16(3), 28–33 (2005).
    [CrossRef]
  7. J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, “Optimized holographic data storage: diffusion and randomization,” J. Opt. A, Pure Appl. Opt. 8(3), 236–243 (2006).
    [CrossRef]
  8. STX Aprilis Inc, www.stxaprilis.com , (2006 - 2008).
  9. InPhase Technologies, www.inphase-technologies.com Tapestry Media, (2007).
  10. M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. Part 1-Regular Papers. Brief Communications. & Review. Papers. 46(6A), 3438–3447 (2007).
  11. Z. Nagy, P. Koppa, F. Ujhelyi, E. Dietz, S. Frohmann, and S. Orlic, “Modeling material saturation effects in microholographic recording,” Opt. Express 15(4), 1732–1737 (2007).
    [CrossRef] [PubMed]
  12. M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16(4), 2829–2839 (2008).
    [CrossRef] [PubMed]
  13. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [CrossRef] [PubMed]
  14. K. Saravanamuttu, C. F. Blanford, D. N. Sharp, E. R. Dedman, A. J. Turberfield, and R. G. Denning, “Sol-gel organic-inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15(12), 2301–2304 (2003).
    [CrossRef]
  15. M. Straub, L. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27(3), 359–364 (2004).
    [CrossRef]
  16. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46(3), 295–301 (2007).
    [CrossRef] [PubMed]
  17. G. Manivannan and R. A. Lessard, “Trends in holographic recording materials,” Trends in Poly Sci. 2, 282–290 (1994).
  18. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik. Stuttgart. The. International. Journal. for. Light. And Electron. Optics. 112(10), 449–463 (2001).
  19. D. H. Close, A. D. Jacobson, R. C. Magerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
    [CrossRef]
  20. Bayer MaterialScience AG, www.bayermaterialscience.com .
  21. T. Rölle, F.-K. Bruder, T. Fäcke, M.-S. Weiser, D. Hönel and N. Stoeckel, “Photopolymerzusammensetzungen für optische Elemente und visuelle Darstellungen,” EP2 172 505 A1, (2010).
  22. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2945 (1969).
  23. L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings, Academic Press, London, (1981).
  24. R. R. A. Syms, Practical Volume Holography, (Clarendon Press, Oxford, 1990).
  25. G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
    [CrossRef]
  26. I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
    [CrossRef]
  27. C. R. Fernandez-Pousa, L. Carretero, and A. Fimia, “Dynamical behaviour of the optical properties of photopolymers and the Lorentz-Lorenz formula,” J. Mod. Opt. 47(8), 1419–1433 (2000).
    [CrossRef]
  28. M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
    [CrossRef]
  29. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000).
    [CrossRef] [PubMed]
  30. M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
    [CrossRef]
  31. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
    [CrossRef]
  32. M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
    [CrossRef]
  33. M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerisation in the formation of holographic gratings,” J. Opt. A 10, 024008 (2009).
  34. G. Odian, Principles of Polymerization, Wiley, New York, (1991).
  35. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
    [CrossRef]
  36. F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
    [CrossRef]
  37. N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
    [CrossRef]
  38. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
    [CrossRef] [PubMed]
  39. C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
    [CrossRef]
  40. C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: part II: High frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28(4), 842–850 (2011).
    [CrossRef]
  41. J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13(9), 095601 (2011).
    [CrossRef]
  42. J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental Results,” J. Opt. 13(9), 095602 (2011).
    [CrossRef]
  43. F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I, 76190I-15 (2010).
    [CrossRef]

2011 (4)

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
[CrossRef]

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: part II: High frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28(4), 842–850 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13(9), 095601 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental Results,” J. Opt. 13(9), 095602 (2011).
[CrossRef]

2010 (2)

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I, 76190I-15 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
[CrossRef]

2009 (3)

2008 (3)

2007 (3)

A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46(3), 295–301 (2007).
[CrossRef] [PubMed]

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. Part 1-Regular Papers. Brief Communications. & Review. Papers. 46(6A), 3438–3447 (2007).

Z. Nagy, P. Koppa, F. Ujhelyi, E. Dietz, S. Frohmann, and S. Orlic, “Modeling material saturation effects in microholographic recording,” Opt. Express 15(4), 1732–1737 (2007).
[CrossRef] [PubMed]

2006 (1)

J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, “Optimized holographic data storage: diffusion and randomization,” J. Opt. A, Pure Appl. Opt. 8(3), 236–243 (2006).
[CrossRef]

2005 (4)

2004 (1)

M. Straub, L. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27(3), 359–364 (2004).
[CrossRef]

2003 (2)

K. Saravanamuttu, C. F. Blanford, D. N. Sharp, E. R. Dedman, A. J. Turberfield, and R. G. Denning, “Sol-gel organic-inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15(12), 2301–2304 (2003).
[CrossRef]

A. Sato, M. Scepanovic, and R. K. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt. 42(5), 778–784 (2003).
[CrossRef] [PubMed]

2002 (1)

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
[CrossRef]

2001 (1)

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik. Stuttgart. The. International. Journal. for. Light. And Electron. Optics. 112(10), 449–463 (2001).

2000 (3)

1999 (1)

1998 (1)

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[CrossRef]

1997 (1)

1994 (2)

G. Manivannan and R. A. Lessard, “Trends in holographic recording materials,” Trends in Poly Sci. 2, 282–290 (1994).

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[CrossRef]

1969 (2)

D. H. Close, A. D. Jacobson, R. C. Magerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[CrossRef]

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2945 (1969).

Aubrecht, I.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[CrossRef]

Betsuyaku, K.

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. Part 1-Regular Papers. Brief Communications. & Review. Papers. 46(6A), 3438–3447 (2007).

Blanford, C. F.

K. Saravanamuttu, C. F. Blanford, D. N. Sharp, E. R. Dedman, A. J. Turberfield, and R. G. Denning, “Sol-gel organic-inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15(12), 2301–2304 (2003).
[CrossRef]

Brault, R. G.

D. H. Close, A. D. Jacobson, R. C. Magerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[CrossRef]

Bruder, F. K.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I, 76190I-15 (2010).
[CrossRef]

Carr, A. J.

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

Carretero, L.

C. R. Fernandez-Pousa, L. Carretero, and A. Fimia, “Dynamical behaviour of the optical properties of photopolymers and the Lorentz-Lorenz formula,” J. Mod. Opt. 47(8), 1419–1433 (2000).
[CrossRef]

Close, C. E.

Close, D. H.

D. H. Close, A. D. Jacobson, R. C. Magerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[CrossRef]

Daiber, A. J.

Daniels, S. M.

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

Dedman, E. R.

K. Saravanamuttu, C. F. Blanford, D. N. Sharp, E. R. Dedman, A. J. Turberfield, and R. G. Denning, “Sol-gel organic-inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15(12), 2301–2304 (2003).
[CrossRef]

Denning, R. G.

K. Saravanamuttu, C. F. Blanford, D. N. Sharp, E. R. Dedman, A. J. Turberfield, and R. G. Denning, “Sol-gel organic-inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15(12), 2301–2304 (2003).
[CrossRef]

Deuber, F.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I, 76190I-15 (2010).
[CrossRef]

Dhar, L.

Dietz, E.

Fäcke, T.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I, 76190I-15 (2010).
[CrossRef]

Fazlic, A.

M. Straub, L. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27(3), 359–364 (2004).
[CrossRef]

Fernandez-Pousa, C. R.

C. R. Fernandez-Pousa, L. Carretero, and A. Fimia, “Dynamical behaviour of the optical properties of photopolymers and the Lorentz-Lorenz formula,” J. Mod. Opt. 47(8), 1419–1433 (2000).
[CrossRef]

Fimia, A.

C. R. Fernandez-Pousa, L. Carretero, and A. Fimia, “Dynamical behaviour of the optical properties of photopolymers and the Lorentz-Lorenz formula,” J. Mod. Opt. 47(8), 1419–1433 (2000).
[CrossRef]

Frohmann, S.

Fukumoto, A.

Gallego, S.

Gaylord, T. K.

Gleeson, M. R.

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
[CrossRef]

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: part II: High frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28(4), 842–850 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13(9), 095601 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental Results,” J. Opt. 13(9), 095602 (2011).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerisation in the formation of holographic gratings,” J. Opt. A 10, 024008 (2009).

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[CrossRef]

J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, “Optimized holographic data storage: diffusion and randomization,” J. Opt. A, Pure Appl. Opt. 8(3), 236–243 (2006).
[CrossRef]

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

Glytsis, E. N.

Grabowski, M. W.

Gu, M.

M. Straub, L. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27(3), 359–364 (2004).
[CrossRef]

Guo, J.

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13(9), 095601 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental Results,” J. Opt. 13(9), 095602 (2011).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
[CrossRef]

Hagen, R.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I, 76190I-15 (2010).
[CrossRef]

Hale, A.

Hesselink, L.

Hönel, D.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I, 76190I-15 (2010).
[CrossRef]

Jacobson, A. D.

D. H. Close, A. D. Jacobson, R. C. Magerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[CrossRef]

Jurbergs, D.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I, 76190I-15 (2010).
[CrossRef]

Katz, H. E.

Kawata, S.

Kelly, J. V.

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[CrossRef]

J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, “Optimized holographic data storage: diffusion and randomization,” J. Opt. A, Pure Appl. Opt. 8(3), 236–243 (2006).
[CrossRef]

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2945 (1969).

Kojima, T.

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
[CrossRef]

Koppa, P.

Kostuk, R. K.

Koudela, I.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[CrossRef]

Lawrence, J. R.

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik. Stuttgart. The. International. Journal. for. Light. And Electron. Optics. 112(10), 449–463 (2001).

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000).
[CrossRef] [PubMed]

Lessard, R. A.

G. Manivannan and R. A. Lessard, “Trends in holographic recording materials,” Trends in Poly Sci. 2, 282–290 (1994).

Liu, S.

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13(9), 095601 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental Results,” J. Opt. 13(9), 095602 (2011).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[CrossRef]

Magerum, R. C.

D. H. Close, A. D. Jacobson, R. C. Magerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[CrossRef]

Manivannan, G.

G. Manivannan and R. A. Lessard, “Trends in holographic recording materials,” Trends in Poly Sci. 2, 282–290 (1994).

Maruo, S.

McClung, F. J.

D. H. Close, A. D. Jacobson, R. C. Magerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[CrossRef]

McDonald, M. E.

McLeod, R. R.

Miler, M.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[CrossRef]

Milster, T. D.

T. D. Milster, “Horizons for optical storage,” Optics and Photonics News 16(3), 28–33 (2005).
[CrossRef]

Mooney, D. A.

Mouroulis, P.

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[CrossRef]

Nagy, Z.

Nakamura, O.

Neipp, C.

Nguyen, L.

M. Straub, L. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27(3), 359–364 (2004).
[CrossRef]

O’Duill, S.

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[CrossRef]

O’Neill, F. T.

J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, “Optimized holographic data storage: diffusion and randomization,” J. Opt. A, Pure Appl. Opt. 8(3), 236–243 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

O'Neill, F. T.

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik. Stuttgart. The. International. Journal. for. Light. And Electron. Optics. 112(10), 449–463 (2001).

Orlic, S.

Robertson, T. L.

Rölle, T.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I, 76190I-15 (2010).
[CrossRef]

Sabol, D.

Saravanamuttu, K.

K. Saravanamuttu, C. F. Blanford, D. N. Sharp, E. R. Dedman, A. J. Turberfield, and R. G. Denning, “Sol-gel organic-inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15(12), 2301–2304 (2003).
[CrossRef]

Sato, A.

Scepanovic, M.

Schilling, F. C.

Schilling, M. L.

Schnoes, M. G.

Schultz, S. M.

Sharp, D. N.

K. Saravanamuttu, C. F. Blanford, D. N. Sharp, E. R. Dedman, A. J. Turberfield, and R. G. Denning, “Sol-gel organic-inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15(12), 2301–2304 (2003).
[CrossRef]

Sheridan, J.

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13(9), 095601 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental Results,” J. Opt. 13(9), 095602 (2011).
[CrossRef]

Sheridan, J. T.

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: part II: High frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28(4), 842–850 (2011).
[CrossRef]

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerisation in the formation of holographic gratings,” J. Opt. A 10, 024008 (2009).

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[CrossRef]

J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, “Optimized holographic data storage: diffusion and randomization,” J. Opt. A, Pure Appl. Opt. 8(3), 236–243 (2006).
[CrossRef]

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik. Stuttgart. The. International. Journal. for. Light. And Electron. Optics. 112(10), 449–463 (2001).

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000).
[CrossRef] [PubMed]

Slagle, T.

Sochava, S. L.

Straub, M.

M. Straub, L. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27(3), 359–364 (2004).
[CrossRef]

Sullivan, A. C.

Suzuki, N.

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
[CrossRef]

Takeda, T.

Tanaka, K.

Tanaka, T.

M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16(4), 2829–2839 (2008).
[CrossRef] [PubMed]

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. Part 1-Regular Papers. Brief Communications. & Review. Papers. 46(6A), 3438–3447 (2007).

Toishi, M.

M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16(4), 2829–2839 (2008).
[CrossRef] [PubMed]

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. Part 1-Regular Papers. Brief Communications. & Review. Papers. 46(6A), 3438–3447 (2007).

Tomita, Y.

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
[CrossRef]

Turberfield, A. J.

K. Saravanamuttu, C. F. Blanford, D. N. Sharp, E. R. Dedman, A. J. Turberfield, and R. G. Denning, “Sol-gel organic-inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15(12), 2301–2304 (2003).
[CrossRef]

Ujhelyi, F.

Watanabe, K.

M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16(4), 2829–2839 (2008).
[CrossRef] [PubMed]

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. Part 1-Regular Papers. Brief Communications. & Review. Papers. 46(6A), 3438–3447 (2007).

Weiser, M. S.

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I, 76190I-15 (2010).
[CrossRef]

Zhao, G. H.

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

D. H. Close, A. D. Jacobson, R. C. Magerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14(5), 159–160 (1969).
[CrossRef]

N. Suzuki, Y. Tomita, and T. Kojima, “Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films,” Appl. Phys. Lett. 81(22), 4121–4123 (2002).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2945 (1969).

Chem. Mater. (1)

K. Saravanamuttu, C. F. Blanford, D. N. Sharp, E. R. Dedman, A. J. Turberfield, and R. G. Denning, “Sol-gel organic-inorganic composites for 3-D holographic lithography of photonic crystals with submicron periodicity,” Chem. Mater. 15(12), 2301–2304 (2003).
[CrossRef]

J. Appl. Phys. (1)

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[CrossRef]

J. Mater. Sci. (1)

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40(15), 4129–4132 (2005).
[CrossRef]

J. Mod. Opt. (3)

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[CrossRef]

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[CrossRef]

C. R. Fernandez-Pousa, L. Carretero, and A. Fimia, “Dynamical behaviour of the optical properties of photopolymers and the Lorentz-Lorenz formula,” J. Mod. Opt. 47(8), 1419–1433 (2000).
[CrossRef]

J. Opt. (2)

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: I. Theoretical modelling,” J. Opt. 13(9), 095601 (2011).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental Results,” J. Opt. 13(9), 095602 (2011).
[CrossRef]

J. Opt. A (1)

M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerisation in the formation of holographic gratings,” J. Opt. A 10, 024008 (2009).

J. Opt. A, Pure Appl. Opt. (1)

J. T. Sheridan, J. V. Kelly, M. R. Gleeson, C. E. Close, and F. T. O’Neill, “Optimized holographic data storage: diffusion and randomization,” J. Opt. A, Pure Appl. Opt. 8(3), 236–243 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (6)

Jpn. J. Appl. Phys. Part 1-Regular Papers. Brief Communications. & Review. Papers. (1)

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. Part 1-Regular Papers. Brief Communications. & Review. Papers. 46(6A), 3438–3447 (2007).

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

M. Straub, L. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27(3), 359–364 (2004).
[CrossRef]

Optics and Photonics News (1)

T. D. Milster, “Horizons for optical storage,” Optics and Photonics News 16(3), 28–33 (2005).
[CrossRef]

Optik. Stuttgart. The. International. Journal. for. Light. And Electron. Optics. (1)

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik. Stuttgart. The. International. Journal. for. Light. And Electron. Optics. 112(10), 449–463 (2001).

Proc. SPIE (1)

F. K. Bruder, F. Deuber, T. Fäcke, R. Hagen, D. Hönel, D. Jurbergs, T. Rölle, and M. S. Weiser, “Reaction diffusion model applied to high resolution Bayfol® HX photopolymer,” Proc. SPIE 7619, 76190I, 76190I-15 (2010).
[CrossRef]

Trends in Poly Sci. (1)

G. Manivannan and R. A. Lessard, “Trends in holographic recording materials,” Trends in Poly Sci. 2, 282–290 (1994).

Other (8)

L. Dhar, A. Hale, K. Kurtis, M. Schnoes, M. Tackitt, W. Wilson, A. Hill, M. Schilling, H. Katz, and A. Olsen, “Photopolymer recording media for high density data storage,” in Conference Digest, Optical Data Storage, IEEE, 158–160, (2000).

STX Aprilis Inc, www.stxaprilis.com , (2006 - 2008).

InPhase Technologies, www.inphase-technologies.com Tapestry Media, (2007).

G. Odian, Principles of Polymerization, Wiley, New York, (1991).

L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings, Academic Press, London, (1981).

R. R. A. Syms, Practical Volume Holography, (Clarendon Press, Oxford, 1990).

Bayer MaterialScience AG, www.bayermaterialscience.com .

T. Rölle, F.-K. Bruder, T. Fäcke, M.-S. Weiser, D. Hönel and N. Stoeckel, “Photopolymerzusammensetzungen für optische Elemente und visuelle Darstellungen,” EP2 172 505 A1, (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Flowchart of the photochemical mechanisms, which take place during photopolymerisation.

Fig. 2
Fig. 2

Typical experimental set-up used to record unlsanted volume transmission holographic gratings with a recording wavelength of λ = 532 nm.

Fig. 3
Fig. 3

Growth curves of refractive index modulation recorded in the AA/PVA photopolymer for three recording intensities: I01 = 1 mW/cm2 (red triangles), I02 = 4 mW/cm2 (green squares) and I03 = 8 mW/cm2 (blue circles).

Fig. 4
Fig. 4

Growth curves of refractive index modulation recorded in the BMS photopolymer for three recording intensities: I01 = 1 mW/cm2 (red triangles), I02 = 4 mW/cm2 (green squares) and I03 = 8 mW/cm2 (blue circles).

Fig. 5
Fig. 5

Comparison of the spatial frequency response of the AA/PVA photopolymer (red squares) and the BMS photopolymer (blue dots). All recordings were carried out with an exposing intensity of I0 = 8 mW/cm2.

Tables (8)

Tables Icon

Table 1 Volume fractions and concentrations of the main components of the BMS acrylate photopolymer material. Concentration of matrix unavailable.

Tables Icon

Table 2 Volume fractions and concentrations of the main components of the acrylamide/polyvinylalcohol photopolymer material. Concentration of matrix unavailable.

Tables Icon

Table 3 Refractive indices of the main components of the BMS acrylate photopolymer material.

Tables Icon

Table 4 Refractive indices of the main components of the AA/PVA photopolymer material.

Tables Icon

Table 5 Parameters extracted from normalised transmission curves over a range of spatial frequencies in the AA/PVA photopolymer material. I0 = 8 mW/cm2.

Tables Icon

Table 6 Parameters extracted from growth curves of refractive index modulation over a range of spatial frequencies in the AA/PVA photopolymer material.

Tables Icon

Table 7 Parameters extracted from normalised transmission curves over a range of spatial frequencies in the BMS acrylate photopolymer. I0 = 8mW/cm2.

Tables Icon

Table 8 Parameters extracted from growth curves of refractive index modulation over a range of spatial frequencies in the BMS acrylate photopolymer material.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

dDye( x,t ) dt = k a Dye( x,t )+ k r 3 Dy e * ( x,t ),
d 3 Dy e * ( x,t ) dt = k a Dye( x,t ) k r 3 Dy e * ( x,t )                                                   k d 3 Dy e * ( x,t )CI( x,t ) k z1 3 Dy e * ( x,t )Z( x,t ),
dCI( x,t ) dt = k d 3 Dy e * ( x,t )CI( x,t ) k b HDy e ( x,t )CI( x,t ),
dHDy e ( x,t ) dt = k d 3 Dy e * ( x,t )CI( x,t ) k b HDy e ( x,t )CI( x,t ),
dZ( x,t ) dt = d dx [ D z dZ( x,t ) dx ] k z1 3 Dy e * ( x,t )Z( x,t )                                    k z2 Z( x,t ) R ( x,t ) k z3 Z( x,t ) M ( x,t )+ τ z [ Z 0 Z( x,t ) ] ,
k z = k z,0 exp( E z / RT ),
d R ( x,t ) dt = k d 3 Dy e * ( x,t )CI( x,t ) k i R ( x,t )u( x,t )                                           k tp R ( x,t ) M ( x,t ) k z R ( x,t )Z( x,t ),
d M ( x,t ) dt = k i R ( x,t )u( x,t ) k t [ M ( x,t ) ] 2                                             k tp R ( x,t ) M ( x,t ) k z Z( x,t ) M ( x,t ),
du( x,t ) dt = d dx [ D m ( x,t ) du( x,t ) dx ] k i R ( x,t )u( x,t )                                                    k p M ( x',t )u( x',t )G( x,x' )dx' ,
G( x,x' )= 1 2πσ exp[ ( xx' ) 2 2σ ],
dN( x,t ) dt = k p M ( x',t )u( x',t )G( x,x' )dx' d dx [ D N ( x,t ) dN( x,t ) dx ],
  Z 0 ( t=0 )= Z 0 Dy e 0 ( t=0 )=Dy e 0 C I 0 ( t=0 )=C I 0 u 0 ( t=0 )= U 0 Dy e n>0 ( t=0 )= D 3 y e n0 * ( t=0 )=HDy e n0 ( t=0 )=C I n>0 ( t=0 )=0,  and           Z n>0 ( t=0 )= R n0 ( t=0 )= M n0 ( t=0 )= N n0 ( t=0 )=0.
ϕ (m) ( t )+ ϕ (p) ( t )+ ϕ (b) ( t )=1,
η( t )= I D ( t ) I in = sin 2 [ π n 1 ( t )d λcosθ ],
n 1 ( t )= λcosθ πd sin 1 [ η ( t ) ].
n 1 ( t )= ( n dark 2 +2 ) 2 6 n dark [ ϕ 1 ( m ) ( t )( n m 2 1 n m 2 +2 n b 2 1 n b 2 +2 )+ ϕ 1 ( p ) ( t )( n p 2 1 n p 2 +2 n b 2 1 n b 2 +2 ) ],

Metrics