Abstract

In this paper, a concept of phase sensitive sensor based on plasmonic nanograting structures with normal incidence and transmission detection is presented. Performed theoretical modeling enables fabrication of nanostructures with optimal geometry for polarimetric measurements of the phase difference between s- and p- polarized light. High phase resolution of the optical setup (6*10−3 deg.) allows detection of the bulk refractive index with sensitivity equal to 3.8*10−6 RIU. Proposed technique presents a more efficient alternative to the conventional spectral interrogation method of nanoplasmonic-based sensing and could be used for multisensing or imaging applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [CrossRef]
  2. L. Guyot, A. P. Blanchard-Dionne, S. Patskovsky, and M. Meunier, “Integrated silicon-based nanoplasmonic sensor,” Opt. Express 19(10), 9962–9967 (2011).
    [CrossRef] [PubMed]
  3. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef] [PubMed]
  4. M. Vala, K. Chadt, M. Piliarik, and J. Homola, “High-performance compact SPR sensor for multi-analyte sensing,” Sens. Actuators B Chem. 148(2), 544–549 (2010).
    [CrossRef]
  5. S. Patskovsky, M. Meunier, P. N. Prasad, and A. V. Kabashin, “Self-noise-filtering phase-sensitive surface plasmon resonance biosensing,” Opt. Express 18(14), 14353–14358 (2010).
    [CrossRef] [PubMed]
  6. W.-C. Law, P. Markowicz, K.-T. Yong, I. Roy, A. Baev, S. Patskovsky, A. V. Kabashin, H.-P. Ho, and P. N. Prasad, “Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics,” Biosens. Bioelectron. 23(5), 627–632 (2007).
    [CrossRef] [PubMed]
  7. P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on gratings as a novel means for gas sensing,” Sens. Actuators B Chem. 8(2), 155–160 (1992).
    [CrossRef]
  8. M. R. Gadsdon, I. R. Hooper, and J. R. Sambles, “Optical resonances on sub-wavelength silver lamellar gratings,” Opt. Express 16(26), 22003–22028 (2008).
    [CrossRef] [PubMed]
  9. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [CrossRef]
  10. D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).
    [CrossRef]
  11. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [CrossRef] [PubMed]
  12. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin, 1988).
  13. F. Abeles, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976).
    [CrossRef]
  14. K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” J. Opt. Soc. Am. 68(9), 1206–1210 (1978).
    [CrossRef]
  15. I. Pockrand, “Resonance anomalies in the light intensity reflected at silver gratings with dielectric coatings,” J. Phys. D Appl. Phys. 9(17), 2423–2432 (1976).
    [CrossRef]
  16. G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B 28(2), 253–264 (2011).
    [CrossRef]
  17. F. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
    [CrossRef]
  18. E. R. Peckt and B. N. Khanna, “Dispersion of nitrogen,” J. Opt. Soc. Am. 56, 1059–1063 (1966).
  19. A. Michels and A. Botzen, “Refractive index and Lorentz-Lorenz function of argon up to 2300 atmospheres at 25°C,” Physica 15(8-9), 769–773 (1949).
    [CrossRef]

2011 (2)

2010 (3)

M. Vala, K. Chadt, M. Piliarik, and J. Homola, “High-performance compact SPR sensor for multi-analyte sensing,” Sens. Actuators B Chem. 148(2), 544–549 (2010).
[CrossRef]

S. Patskovsky, M. Meunier, P. N. Prasad, and A. V. Kabashin, “Self-noise-filtering phase-sensitive surface plasmon resonance biosensing,” Opt. Express 18(14), 14353–14358 (2010).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

2008 (1)

2007 (3)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

W.-C. Law, P. Markowicz, K.-T. Yong, I. Roy, A. Baev, S. Patskovsky, A. V. Kabashin, H.-P. Ho, and P. N. Prasad, “Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics,” Biosens. Bioelectron. 23(5), 627–632 (2007).
[CrossRef] [PubMed]

F. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[CrossRef]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

1992 (1)

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on gratings as a novel means for gas sensing,” Sens. Actuators B Chem. 8(2), 155–160 (1992).
[CrossRef]

1981 (1)

1978 (1)

1976 (2)

I. Pockrand, “Resonance anomalies in the light intensity reflected at silver gratings with dielectric coatings,” J. Phys. D Appl. Phys. 9(17), 2423–2432 (1976).
[CrossRef]

F. Abeles, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976).
[CrossRef]

1975 (1)

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).
[CrossRef]

1966 (1)

1949 (1)

A. Michels and A. Botzen, “Refractive index and Lorentz-Lorenz function of argon up to 2300 atmospheres at 25°C,” Physica 15(8-9), 769–773 (1949).
[CrossRef]

Abeles, F.

F. Abeles, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976).
[CrossRef]

Alù, A.

Baev, A.

W.-C. Law, P. Markowicz, K.-T. Yong, I. Roy, A. Baev, S. Patskovsky, A. V. Kabashin, H.-P. Ho, and P. N. Prasad, “Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics,” Biosens. Bioelectron. 23(5), 627–632 (2007).
[CrossRef] [PubMed]

Blanchard-Dionne, A. P.

Bloemer, M. J.

Botzen, A.

A. Michels and A. Botzen, “Refractive index and Lorentz-Lorenz function of argon up to 2300 atmospheres at 25°C,” Physica 15(8-9), 769–773 (1949).
[CrossRef]

Bryan-Brown, G. P.

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on gratings as a novel means for gas sensing,” Sens. Actuators B Chem. 8(2), 155–160 (1992).
[CrossRef]

Chadt, K.

M. Vala, K. Chadt, M. Piliarik, and J. Homola, “High-performance compact SPR sensor for multi-analyte sensing,” Sens. Actuators B Chem. 148(2), 544–549 (2010).
[CrossRef]

D’Aguanno, G.

de Ceglia, D.

Ebbesen, T. W.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Gadsdon, M. R.

García de Abajo, F.

F. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Gaylord, T. K.

Guyot, L.

Ho, H.-P.

W.-C. Law, P. Markowicz, K.-T. Yong, I. Roy, A. Baev, S. Patskovsky, A. V. Kabashin, H.-P. Ho, and P. N. Prasad, “Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics,” Biosens. Bioelectron. 23(5), 627–632 (2007).
[CrossRef] [PubMed]

Homola, J.

M. Vala, K. Chadt, M. Piliarik, and J. Homola, “High-performance compact SPR sensor for multi-analyte sensing,” Sens. Actuators B Chem. 148(2), 544–549 (2010).
[CrossRef]

Hooper, I. R.

Kabashin, A. V.

S. Patskovsky, M. Meunier, P. N. Prasad, and A. V. Kabashin, “Self-noise-filtering phase-sensitive surface plasmon resonance biosensing,” Opt. Express 18(14), 14353–14358 (2010).
[CrossRef] [PubMed]

W.-C. Law, P. Markowicz, K.-T. Yong, I. Roy, A. Baev, S. Patskovsky, A. V. Kabashin, H.-P. Ho, and P. N. Prasad, “Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics,” Biosens. Bioelectron. 23(5), 627–632 (2007).
[CrossRef] [PubMed]

Khanna, B. N.

Knop, K.

Kuipers, L.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Law, W.-C.

W.-C. Law, P. Markowicz, K.-T. Yong, I. Roy, A. Baev, S. Patskovsky, A. V. Kabashin, H.-P. Ho, and P. N. Prasad, “Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics,” Biosens. Bioelectron. 23(5), 627–632 (2007).
[CrossRef] [PubMed]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Markowicz, P.

W.-C. Law, P. Markowicz, K.-T. Yong, I. Roy, A. Baev, S. Patskovsky, A. V. Kabashin, H.-P. Ho, and P. N. Prasad, “Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics,” Biosens. Bioelectron. 23(5), 627–632 (2007).
[CrossRef] [PubMed]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Mattiucci, N.

Meunier, M.

Michels, A.

A. Michels and A. Botzen, “Refractive index and Lorentz-Lorenz function of argon up to 2300 atmospheres at 25°C,” Physica 15(8-9), 769–773 (1949).
[CrossRef]

Mills, D. L.

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).
[CrossRef]

Moharam, M. G.

Patskovsky, S.

L. Guyot, A. P. Blanchard-Dionne, S. Patskovsky, and M. Meunier, “Integrated silicon-based nanoplasmonic sensor,” Opt. Express 19(10), 9962–9967 (2011).
[CrossRef] [PubMed]

S. Patskovsky, M. Meunier, P. N. Prasad, and A. V. Kabashin, “Self-noise-filtering phase-sensitive surface plasmon resonance biosensing,” Opt. Express 18(14), 14353–14358 (2010).
[CrossRef] [PubMed]

W.-C. Law, P. Markowicz, K.-T. Yong, I. Roy, A. Baev, S. Patskovsky, A. V. Kabashin, H.-P. Ho, and P. N. Prasad, “Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics,” Biosens. Bioelectron. 23(5), 627–632 (2007).
[CrossRef] [PubMed]

Peckt, E. R.

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Piliarik, M.

M. Vala, K. Chadt, M. Piliarik, and J. Homola, “High-performance compact SPR sensor for multi-analyte sensing,” Sens. Actuators B Chem. 148(2), 544–549 (2010).
[CrossRef]

Pockrand, I.

I. Pockrand, “Resonance anomalies in the light intensity reflected at silver gratings with dielectric coatings,” J. Phys. D Appl. Phys. 9(17), 2423–2432 (1976).
[CrossRef]

Prasad, P. N.

S. Patskovsky, M. Meunier, P. N. Prasad, and A. V. Kabashin, “Self-noise-filtering phase-sensitive surface plasmon resonance biosensing,” Opt. Express 18(14), 14353–14358 (2010).
[CrossRef] [PubMed]

W.-C. Law, P. Markowicz, K.-T. Yong, I. Roy, A. Baev, S. Patskovsky, A. V. Kabashin, H.-P. Ho, and P. N. Prasad, “Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics,” Biosens. Bioelectron. 23(5), 627–632 (2007).
[CrossRef] [PubMed]

Roy, I.

W.-C. Law, P. Markowicz, K.-T. Yong, I. Roy, A. Baev, S. Patskovsky, A. V. Kabashin, H.-P. Ho, and P. N. Prasad, “Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics,” Biosens. Bioelectron. 23(5), 627–632 (2007).
[CrossRef] [PubMed]

Sambles, J. R.

M. R. Gadsdon, I. R. Hooper, and J. R. Sambles, “Optical resonances on sub-wavelength silver lamellar gratings,” Opt. Express 16(26), 22003–22028 (2008).
[CrossRef] [PubMed]

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on gratings as a novel means for gas sensing,” Sens. Actuators B Chem. 8(2), 155–160 (1992).
[CrossRef]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Vala, M.

M. Vala, K. Chadt, M. Piliarik, and J. Homola, “High-performance compact SPR sensor for multi-analyte sensing,” Sens. Actuators B Chem. 148(2), 544–549 (2010).
[CrossRef]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Vincenti, M. A.

Vukusic, P. S.

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on gratings as a novel means for gas sensing,” Sens. Actuators B Chem. 8(2), 155–160 (1992).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Yong, K.-T.

W.-C. Law, P. Markowicz, K.-T. Yong, I. Roy, A. Baev, S. Patskovsky, A. V. Kabashin, H.-P. Ho, and P. N. Prasad, “Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics,” Biosens. Bioelectron. 23(5), 627–632 (2007).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

W.-C. Law, P. Markowicz, K.-T. Yong, I. Roy, A. Baev, S. Patskovsky, A. V. Kabashin, H.-P. Ho, and P. N. Prasad, “Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics,” Biosens. Bioelectron. 23(5), 627–632 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

I. Pockrand, “Resonance anomalies in the light intensity reflected at silver gratings with dielectric coatings,” J. Phys. D Appl. Phys. 9(17), 2423–2432 (1976).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (1)

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975).
[CrossRef]

Phys. Rev. Lett. (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Physica (1)

A. Michels and A. Botzen, “Refractive index and Lorentz-Lorenz function of argon up to 2300 atmospheres at 25°C,” Physica 15(8-9), 769–773 (1949).
[CrossRef]

Rev. Mod. Phys. (2)

F. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[CrossRef]

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Sens. Actuators B Chem. (2)

M. Vala, K. Chadt, M. Piliarik, and J. Homola, “High-performance compact SPR sensor for multi-analyte sensing,” Sens. Actuators B Chem. 148(2), 544–549 (2010).
[CrossRef]

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on gratings as a novel means for gas sensing,” Sens. Actuators B Chem. 8(2), 155–160 (1992).
[CrossRef]

Surf. Sci. (1)

F. Abeles, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig.
       1
Fig. 1

a) Schematic representation of the nanograting with period d, ridge size r, slit size s and thickness h; a) Intensity and phase of the light transmitted through the nanoslit array with 600nm period, 450nm ridge size and 100 nm thickness.

Fig.
       2
Fig. 2

a) Theoretical spectral phase curves for nanograting structures with different ridge sizes; dashed blue line presents a shifted spectral phase curve for r = 450nm resulting from a change in refractive index equal to 3*10−3RIU; b) Experimental spectral phase characteristics.

Fig.
       3
Fig. 3

Theoretical (solid curves; scale on the left) and experimental data (points; scale on the right) for phase sensitivity dependence on the ridge sizes.

Fig.
       4
Fig. 4

Theoretical results for optimal grating thickness and corresponding working wavelength position for different ridge sizes; Inserts: Typical phase curves for marked region.

Fig.
       5
Fig. 5

Experimental phase dependences for different incident angles;

Fig.
       6
Fig. 6

AFM sample images and optical set-up for phase measurements.

Fig.
       7
Fig. 7

(a) Phase sensitivity experiment. b) Determination of optimal incident angle.

Fig.
       8
Fig. 8

Experimental results for phase under the replacement of pure N2 by Ar.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε d 2π λ 0 sin( θ )+p 2π Λ = 2π λ 0 ε M ( λ ) ε d ( λ ) ε M ( λ )+ ε d ( λ )
F 1 = 2 J 1 ( M ) R p R s sin ( α + ( ϕ p ϕ s ) )
F 2 = 2 J 2 ( M ) R p R s cos ( α + ( ϕ p ϕ s ) )
ϕ = tan 1 ( F 1 J 2 ( M ) F 2 J 1 ( M ) )

Metrics