Abstract

We fabricated the germanium (Ge) subwavelength structures (SWSs) using gold (Au) metallic nanopatterns dewetted by rapid thermal annealing and inductively coupled plasma etching in SiCl4 plasma for Ge-based photovoltaic cells. Using the optimized Au nanopatterns as an etch mask, the Ge SWSs were formed by varying the etching parameters to achieve the better antireflection properties. The reflectance of Ge SWSs depended strongly on their period, height, and shape which are closely related to the refractive index profile between air and the Ge substrate. The tapered cone Ge SWSs reduced considerably the reflectance compared to the samples with a truncated cone shape as well as the Ge substrate due to the linearly graded refractive index distribution from air to the Ge substrate. The Ge SWS with the tapered cone shape and high height exhibited a dramatic decrease in the reflectance (i.e., <10%) over a wide wavelength region of 350-1800 nm, thus leading to a low solar weighted reflectance of ~3.6%. The reflectance was also lower than ~8.8% at a wavelength of 633 nm in the incident angle range of 15-85°. The measured reflectance data of Ge SWSs showed similar trends to the calculated results in a rigorous coupled wave analysis simulation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110(2), 023107 (2011).
    [CrossRef]
  2. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
    [CrossRef]
  3. W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
    [CrossRef]
  4. M. Yamaguchi, T. Takamoto, and K. Araki, “Super high-efficiency multi-junction and concentrator solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3068–3077 (2006).
    [CrossRef]
  5. I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94(19), 191102 (2009).
    [CrossRef]
  6. N. E. Posthuma, J. van der Heide, G. Flamand, and J. Poortmans, “Emitter formation and contact realization by diffusion for germanium photovoltaic devices,” IEEE Trans. Electron. Dev. 54(5), 1210–1215 (2007).
    [CrossRef]
  7. N. E. Posthuma, J. van der Heide, G. Flamand, and J. Poortmans, “Development of low cost germanium photovoltaic cells for application in TPV using spin on diffusants,” AIP Conf. Proc. 738, 337–344 (2004).
    [CrossRef]
  8. T. Nagashima, K. Okumura, and M. Yamaguchi, “A germanium back contact type thermophotovoltaic cell,” AIP Conf. Proc. 890, 174–181 (2007).
    [CrossRef]
  9. J. van der Heide, N. E. Posthuma, G. Flamand, W. Geens, and J. Poortmans, “Cost-efficient thermophotovoltaic cells based on germanium substrates,” Sol. Energy Mater. Sol. Cells 93(10), 1810–1816 (2009).
    [CrossRef]
  10. P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
    [CrossRef]
  11. Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
    [CrossRef] [PubMed]
  12. T. Hanrath and B. A. Korgel, “Chemical surface passivation of Ge nanowires,” J. Am. Chem. Soc. 126(47), 15466–15472 (2004).
    [CrossRef] [PubMed]
  13. Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).
    [CrossRef] [PubMed]
  14. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
    [CrossRef]
  15. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
    [CrossRef] [PubMed]
  16. M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express 18(S3Suppl 3), A308–A313 (2010).
    [CrossRef] [PubMed]
  17. E. S. Choi, Y. M. Song, G. C. Park, and Y. T. Lee, “Disordered antireflective subwavelength structures using Ag nanoparticles for GaN-based optical device applications,” J. Nanosci. Nanotechnol. 11(2), 1342–1345 (2011).
    [CrossRef] [PubMed]
  18. K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape effect of silicon nitride subwavelength structure on reflectance for silicon solar cells,” IEEE Trans. Electron. Dev. 57(10), 2427–2433 (2010).
    [CrossRef]
  19. J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
    [CrossRef]
  20. B. J. Kim and J. Kim, “Fabrication of GaAs subwavelength structure (SWS) for solar cell applications,” Opt. Express 19(S3Suppl 3), A326–A330 (2011).
    [CrossRef] [PubMed]
  21. J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2221–2227 (2011).
    [CrossRef]
  22. J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
    [CrossRef]
  23. S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
    [CrossRef]
  24. C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express 16(12), 8748–8754 (2008).
    [CrossRef] [PubMed]
  25. J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflection characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 669–676 (2011).
    [CrossRef]
  26. Y. Li, J. Zhang, and B. Yang, “Antireflection surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
    [CrossRef]
  27. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
    [CrossRef] [PubMed]
  28. A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng. 39(11), 2959–2963 (2000).
    [CrossRef]
  29. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
    [CrossRef] [PubMed]
  30. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [CrossRef]
  31. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
    [CrossRef]
  32. M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008).
    [CrossRef] [PubMed]
  33. D. J. Economou, “Modeling and simulation of plasma etching reactors for microelectronics,” Thin Solid Films 365(2), 348–367 (2000).
    [CrossRef]
  34. D. Redfield, “Method for evaluation of antireflection coatings,” Solar Cells 3(1), 27–33 (1981).
    [CrossRef]

2011 (6)

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110(2), 023107 (2011).
[CrossRef]

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

E. S. Choi, Y. M. Song, G. C. Park, and Y. T. Lee, “Disordered antireflective subwavelength structures using Ag nanoparticles for GaN-based optical device applications,” J. Nanosci. Nanotechnol. 11(2), 1342–1345 (2011).
[CrossRef] [PubMed]

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflection characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 669–676 (2011).
[CrossRef]

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2221–2227 (2011).
[CrossRef]

B. J. Kim and J. Kim, “Fabrication of GaAs subwavelength structure (SWS) for solar cell applications,” Opt. Express 19(S3Suppl 3), A326–A330 (2011).
[CrossRef] [PubMed]

2010 (6)

M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express 18(S3Suppl 3), A308–A313 (2010).
[CrossRef] [PubMed]

Y. Li, J. Zhang, and B. Yang, “Antireflection surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[CrossRef]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape effect of silicon nitride subwavelength structure on reflectance for silicon solar cells,” IEEE Trans. Electron. Dev. 57(10), 2427–2433 (2010).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

2009 (4)

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94(19), 191102 (2009).
[CrossRef]

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

J. van der Heide, N. E. Posthuma, G. Flamand, W. Geens, and J. Poortmans, “Cost-efficient thermophotovoltaic cells based on germanium substrates,” Sol. Energy Mater. Sol. Cells 93(10), 1810–1816 (2009).
[CrossRef]

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

2008 (5)

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express 16(12), 8748–8754 (2008).
[CrossRef] [PubMed]

M. L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S. Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33(21), 2527–2529 (2008).
[CrossRef] [PubMed]

2007 (4)

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[CrossRef]

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

N. E. Posthuma, J. van der Heide, G. Flamand, and J. Poortmans, “Emitter formation and contact realization by diffusion for germanium photovoltaic devices,” IEEE Trans. Electron. Dev. 54(5), 1210–1215 (2007).
[CrossRef]

T. Nagashima, K. Okumura, and M. Yamaguchi, “A germanium back contact type thermophotovoltaic cell,” AIP Conf. Proc. 890, 174–181 (2007).
[CrossRef]

2006 (2)

M. Yamaguchi, T. Takamoto, and K. Araki, “Super high-efficiency multi-junction and concentrator solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3068–3077 (2006).
[CrossRef]

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

2004 (2)

T. Hanrath and B. A. Korgel, “Chemical surface passivation of Ge nanowires,” J. Am. Chem. Soc. 126(47), 15466–15472 (2004).
[CrossRef] [PubMed]

N. E. Posthuma, J. van der Heide, G. Flamand, and J. Poortmans, “Development of low cost germanium photovoltaic cells for application in TPV using spin on diffusants,” AIP Conf. Proc. 738, 337–344 (2004).
[CrossRef]

2000 (2)

D. J. Economou, “Modeling and simulation of plasma etching reactors for microelectronics,” Thin Solid Films 365(2), 348–367 (2000).
[CrossRef]

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng. 39(11), 2959–2963 (2000).
[CrossRef]

1981 (2)

1973 (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Algora, C.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94(19), 191102 (2009).
[CrossRef]

Araki, K.

M. Yamaguchi, T. Takamoto, and K. Araki, “Super high-efficiency multi-junction and concentrator solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3068–3077 (2006).
[CrossRef]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

Bett, A. W.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

Brenzikofer, A.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110(2), 023107 (2011).
[CrossRef]

Chang, C. H.

M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express 18(S3Suppl 3), A308–A313 (2010).
[CrossRef] [PubMed]

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Chang, E. Y.

K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape effect of silicon nitride subwavelength structure on reflectance for silicon solar cells,” IEEE Trans. Electron. Dev. 57(10), 2427–2433 (2010).
[CrossRef]

Chang, F. Y.

Chang, Y. C.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express 16(12), 8748–8754 (2008).
[CrossRef] [PubMed]

Chen, C. C.

Cheng, Y. J.

Chiu, C. H.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express 16(12), 8748–8754 (2008).
[CrossRef] [PubMed]

Chiu, M. Y.

Choi, E. S.

E. S. Choi, Y. M. Song, G. C. Park, and Y. T. Lee, “Disordered antireflective subwavelength structures using Ag nanoparticles for GaN-based optical device applications,” J. Nanosci. Nanotechnol. 11(2), 1342–1345 (2011).
[CrossRef] [PubMed]

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Crozier, K. B.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Cui, Y.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Dan, Y.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Dimroth, F.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Dommann, A.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110(2), 023107 (2011).
[CrossRef]

Economou, D. J.

D. J. Economou, “Modeling and simulation of plasma etching reactors for microelectronics,” Thin Solid Films 365(2), 348–367 (2000).
[CrossRef]

Fan, H. T.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

Fan, S.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Flamand, G.

J. van der Heide, N. E. Posthuma, G. Flamand, W. Geens, and J. Poortmans, “Cost-efficient thermophotovoltaic cells based on germanium substrates,” Sol. Energy Mater. Sol. Cells 93(10), 1810–1816 (2009).
[CrossRef]

N. E. Posthuma, J. van der Heide, G. Flamand, and J. Poortmans, “Emitter formation and contact realization by diffusion for germanium photovoltaic devices,” IEEE Trans. Electron. Dev. 54(5), 1210–1215 (2007).
[CrossRef]

N. E. Posthuma, J. van der Heide, G. Flamand, and J. Poortmans, “Development of low cost germanium photovoltaic cells for application in TPV using spin on diffusants,” AIP Conf. Proc. 738, 337–344 (2004).
[CrossRef]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Galiana, B.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94(19), 191102 (2009).
[CrossRef]

Gaylord, T. K.

Geens, W.

J. van der Heide, N. E. Posthuma, G. Flamand, W. Geens, and J. Poortmans, “Cost-efficient thermophotovoltaic cells based on germanium substrates,” Sol. Energy Mater. Sol. Cells 93(10), 1810–1816 (2009).
[CrossRef]

Guter, W.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Hanrath, T.

T. Hanrath and B. A. Korgel, “Chemical surface passivation of Ge nanowires,” J. Am. Chem. Soc. 126(47), 15466–15472 (2004).
[CrossRef] [PubMed]

Hsu, C. M.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Hsu, J. W. P.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Hsu, S. H.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express 16(12), 8748–8754 (2008).
[CrossRef] [PubMed]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Isella, G.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110(2), 023107 (2011).
[CrossRef]

Jääskeläinen, A. J.

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng. 39(11), 2959–2963 (2000).
[CrossRef]

Jang, S. J.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Javey, A.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Joo, D. H.

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2221–2227 (2011).
[CrossRef]

Kaufmann, R.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110(2), 023107 (2011).
[CrossRef]

Kauppinen, E. I.

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng. 39(11), 2959–2963 (2000).
[CrossRef]

Kim, B. I.

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[CrossRef]

Kim, B. J.

Kim, J.

Kim, J. K.

Kim, Y. S.

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Korgel, B. A.

T. Hanrath and B. A. Korgel, “Chemical surface passivation of Ge nanowires,” J. Am. Chem. Soc. 126(47), 15466–15472 (2004).
[CrossRef] [PubMed]

Kuo, H. C.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express 16(12), 8748–8754 (2008).
[CrossRef] [PubMed]

Kuo, M. L.

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Lee, J. M.

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[CrossRef]

Lee, Y. J.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Lee, Y. T.

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflection characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 669–676 (2011).
[CrossRef]

E. S. Choi, Y. M. Song, G. C. Park, and Y. T. Lee, “Disordered antireflective subwavelength structures using Ag nanoparticles for GaN-based optical device applications,” J. Nanosci. Nanotechnol. 11(2), 1342–1345 (2011).
[CrossRef] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

Leem, J. W.

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2221–2227 (2011).
[CrossRef]

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflection characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 669–676 (2011).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

Li, Y.

K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape effect of silicon nitride subwavelength structure on reflectance for silicon solar cells,” IEEE Trans. Electron. Dev. 57(10), 2427–2433 (2010).
[CrossRef]

Y. Li, J. Zhang, and B. Yang, “Antireflection surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[CrossRef]

Lin, S. Y.

Lu, T. C.

Lumme, K.

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng. 39(11), 2959–2963 (2000).
[CrossRef]

Ly-Gagnon, D. S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Martínez, L. J.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94(19), 191102 (2009).
[CrossRef]

McKenzie, B. B.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Meza, J. H.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Moharam, M. G.

Mont, F. W.

Nagashima, T.

T. Nagashima, K. Okumura, and M. Yamaguchi, “A germanium back contact type thermophotovoltaic cell,” AIP Conf. Proc. 890, 174–181 (2007).
[CrossRef]

Neels, A.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110(2), 023107 (2011).
[CrossRef]

Neukom, S.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110(2), 023107 (2011).
[CrossRef]

Neumann, L.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110(2), 023107 (2011).
[CrossRef]

Okumura, K.

T. Nagashima, K. Okumura, and M. Yamaguchi, “A germanium back contact type thermophotovoltaic cell,” AIP Conf. Proc. 890, 174–181 (2007).
[CrossRef]

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Oliva, E.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Park, G. C.

E. S. Choi, Y. M. Song, G. C. Park, and Y. T. Lee, “Disordered antireflective subwavelength structures using Ag nanoparticles for GaN-based optical device applications,” J. Nanosci. Nanotechnol. 11(2), 1342–1345 (2011).
[CrossRef] [PubMed]

Peiponen, K. E.

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng. 39(11), 2959–2963 (2000).
[CrossRef]

Peters, D. W.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Philipps, S. P.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Poortmans, J.

J. van der Heide, N. E. Posthuma, G. Flamand, W. Geens, and J. Poortmans, “Cost-efficient thermophotovoltaic cells based on germanium substrates,” Sol. Energy Mater. Sol. Cells 93(10), 1810–1816 (2009).
[CrossRef]

N. E. Posthuma, J. van der Heide, G. Flamand, and J. Poortmans, “Emitter formation and contact realization by diffusion for germanium photovoltaic devices,” IEEE Trans. Electron. Dev. 54(5), 1210–1215 (2007).
[CrossRef]

N. E. Posthuma, J. van der Heide, G. Flamand, and J. Poortmans, “Development of low cost germanium photovoltaic cells for application in TPV using spin on diffusants,” AIP Conf. Proc. 738, 337–344 (2004).
[CrossRef]

Posthuma, N. E.

J. van der Heide, N. E. Posthuma, G. Flamand, W. Geens, and J. Poortmans, “Cost-efficient thermophotovoltaic cells based on germanium substrates,” Sol. Energy Mater. Sol. Cells 93(10), 1810–1816 (2009).
[CrossRef]

N. E. Posthuma, J. van der Heide, G. Flamand, and J. Poortmans, “Emitter formation and contact realization by diffusion for germanium photovoltaic devices,” IEEE Trans. Electron. Dev. 54(5), 1210–1215 (2007).
[CrossRef]

N. E. Posthuma, J. van der Heide, G. Flamand, and J. Poortmans, “Development of low cost germanium photovoltaic cells for application in TPV using spin on diffusants,” AIP Conf. Proc. 738, 337–344 (2004).
[CrossRef]

Postigo, P. A.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94(19), 191102 (2009).
[CrossRef]

Poxson, D. J.

Prieto, I.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94(19), 191102 (2009).
[CrossRef]

Räty, J.

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng. 39(11), 2959–2963 (2000).
[CrossRef]

Redfield, D.

D. Redfield, “Method for evaluation of antireflection coatings,” Solar Cells 3(1), 27–33 (1981).
[CrossRef]

Rey-Stolle, I.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94(19), 191102 (2009).
[CrossRef]

Richard, O.

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng. 39(11), 2959–2963 (2000).
[CrossRef]

Ruby, D. S.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Sahoo, K. C.

K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape effect of silicon nitride subwavelength structure on reflectance for silicon solar cells,” IEEE Trans. Electron. Dev. 57(10), 2427–2433 (2010).
[CrossRef]

Sanchez-Amores, A.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110(2), 023107 (2011).
[CrossRef]

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Schöne, J.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Schubert, E. F.

Seo, K.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Siefer, G.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Song, Y. M.

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflection characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 669–676 (2011).
[CrossRef]

E. S. Choi, Y. M. Song, G. C. Park, and Y. T. Lee, “Disordered antireflective subwavelength structures using Ag nanoparticles for GaN-based optical device applications,” J. Nanosci. Nanotechnol. 11(2), 1342–1345 (2011).
[CrossRef] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Steiner, M.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Takamoto, T.

M. Yamaguchi, T. Takamoto, and K. Araki, “Super high-efficiency multi-junction and concentrator solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3068–3077 (2006).
[CrossRef]

Takei, K.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Tapper, U.

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng. 39(11), 2959–2963 (2000).
[CrossRef]

Tsai, M. A.

Urban, C.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110(2), 023107 (2011).
[CrossRef]

van der Heide, J.

J. van der Heide, N. E. Posthuma, G. Flamand, W. Geens, and J. Poortmans, “Cost-efficient thermophotovoltaic cells based on germanium substrates,” Sol. Energy Mater. Sol. Cells 93(10), 1810–1816 (2009).
[CrossRef]

N. E. Posthuma, J. van der Heide, G. Flamand, and J. Poortmans, “Emitter formation and contact realization by diffusion for germanium photovoltaic devices,” IEEE Trans. Electron. Dev. 54(5), 1210–1215 (2007).
[CrossRef]

N. E. Posthuma, J. van der Heide, G. Flamand, and J. Poortmans, “Development of low cost germanium photovoltaic cells for application in TPV using spin on diffusants,” AIP Conf. Proc. 738, 337–344 (2004).
[CrossRef]

von Känel, H.

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110(2), 023107 (2011).
[CrossRef]

Wang, S.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

Wang, S. C.

Wekkeli, A.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Welser, E.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

Yamaguchi, M.

T. Nagashima, K. Okumura, and M. Yamaguchi, “A germanium back contact type thermophotovoltaic cell,” AIP Conf. Proc. 890, 174–181 (2007).
[CrossRef]

M. Yamaguchi, T. Takamoto, and K. Araki, “Super high-efficiency multi-junction and concentrator solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3068–3077 (2006).
[CrossRef]

Yang, B.

Y. Li, J. Zhang, and B. Yang, “Antireflection surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[CrossRef]

Yang, C. S.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yu, J. C.

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yu, J. S.

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflection characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 669–676 (2011).
[CrossRef]

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2221–2227 (2011).
[CrossRef]

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Yu, P.

Yu, X. Z.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

Yu, Z.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Zhang, J.

Y. Li, J. Zhang, and B. Yang, “Antireflection surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[CrossRef]

Zhu, J.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Adv. Mater. (1)

P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

AIP Conf. Proc. (2)

N. E. Posthuma, J. van der Heide, G. Flamand, and J. Poortmans, “Development of low cost germanium photovoltaic cells for application in TPV using spin on diffusants,” AIP Conf. Proc. 738, 337–344 (2004).
[CrossRef]

T. Nagashima, K. Okumura, and M. Yamaguchi, “A germanium back contact type thermophotovoltaic cell,” AIP Conf. Proc. 890, 174–181 (2007).
[CrossRef]

Appl. Phys. B (1)

J. W. Leem, Y. M. Song, Y. T. Lee, and J. S. Yu, “Antireflective properties of AZO subwavelength gratings patterned by holographic lithography,” Appl. Phys. B 99(4), 695–700 (2010).
[CrossRef]

Appl. Phys. Lett. (4)

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[CrossRef]

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett. 94(19), 191102 (2009).
[CrossRef]

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett. 94(22), 223504 (2009).
[CrossRef]

IEEE Trans. Electron. Dev. (2)

N. E. Posthuma, J. van der Heide, G. Flamand, and J. Poortmans, “Emitter formation and contact realization by diffusion for germanium photovoltaic devices,” IEEE Trans. Electron. Dev. 54(5), 1210–1215 (2007).
[CrossRef]

K. C. Sahoo, Y. Li, and E. Y. Chang, “Shape effect of silicon nitride subwavelength structure on reflectance for silicon solar cells,” IEEE Trans. Electron. Dev. 57(10), 2427–2433 (2010).
[CrossRef]

J. Am. Chem. Soc. (1)

T. Hanrath and B. A. Korgel, “Chemical surface passivation of Ge nanowires,” J. Am. Chem. Soc. 126(47), 15466–15472 (2004).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Dommann, C. Urban, and H. von Känel, “Near infrared image sensor with integrated germanium photodiodes,” J. Appl. Phys. 110(2), 023107 (2011).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

E. S. Choi, Y. M. Song, G. C. Park, and Y. T. Lee, “Disordered antireflective subwavelength structures using Ag nanoparticles for GaN-based optical device applications,” J. Nanosci. Nanotechnol. 11(2), 1342–1345 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Mater. Sci. Eng. A (1)

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007).
[CrossRef]

Nano Lett. (3)

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef] [PubMed]

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[CrossRef] [PubMed]

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett. 11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Nano Today (1)

Y. Li, J. Zhang, and B. Yang, “Antireflection surfaces based on biomimetic nanopillared arrays,” Nano Today 5(2), 117–127 (2010).
[CrossRef]

Nat. Photonics (1)

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008).
[CrossRef]

Nature (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Opt. Eng. (1)

A. J. Jääskeläinen, K. E. Peiponen, J. Räty, U. Tapper, O. Richard, E. I. Kauppinen, and K. Lumme, “Estimation of the refractive index of plastic pigments by Wiener bounds,” Opt. Eng. 39(11), 2959–2963 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. Biol. Sci. (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Small (1)

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (4)

M. Yamaguchi, T. Takamoto, and K. Araki, “Super high-efficiency multi-junction and concentrator solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3068–3077 (2006).
[CrossRef]

J. van der Heide, N. E. Posthuma, G. Flamand, W. Geens, and J. Poortmans, “Cost-efficient thermophotovoltaic cells based on germanium substrates,” Sol. Energy Mater. Sol. Cells 93(10), 1810–1816 (2009).
[CrossRef]

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflection characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 669–676 (2011).
[CrossRef]

J. W. Leem, D. H. Joo, and J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Sol. Energy Mater. Sol. Cells 95(8), 2221–2227 (2011).
[CrossRef]

Solar Cells (1)

D. Redfield, “Method for evaluation of antireflection coatings,” Solar Cells 3(1), 27–33 (1981).
[CrossRef]

Thin Solid Films (1)

D. J. Economou, “Modeling and simulation of plasma etching reactors for microelectronics,” Thin Solid Films 365(2), 348–367 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the process steps for the fabrication of SWSs on Ge substrates using Au nanomask patterns. The tow-view SEM images of thermally dewetted Au nanoparticles and the refractive index profile of truncated and cone-shaped Ge SWSs are also shown.

Fig. 2
Fig. 2

(a) SEM images of etched Ge SWSs using Au nanomask patterns for Au film thicknesses of (i) 5 nm, (ii) 10 nm, and (iii) 15 nm, (b) contour plot of the variation of calculated reflectance spectra as a function of the period of Ge SWSs, (c) electric field intensity distribution of the Ge SWS at a wavelength of 1000 nm at normal incidence, and (d) measured reflectance spectra of the corresponding Ge SWSs.

Fig. 3
Fig. 3

(a) 10°-tilted side-view SEM images and (b) measured reflectance spectra of the etched Ge SWSs using Au nanomask patterns for RF powers of (i) 25 W, (ii) 50 W, (iii) 75 W, and (iv) 100 W.

Fig. 4
Fig. 4

Measured reflectance spectra of the etched Ge SWSs using Au nanomask patterns at different (a) additional ICP powers and (b) process pressures. The insets show the SEM images of the corresponding structures.

Fig. 5
Fig. 5

(a) SEM images of the etched Ge SWSs at etching times of (i) 5 min, (ii) 10 min, and (iii) 15 min using the Au nanopatterns, (b) contour plot of calculated reflectance spectra of the Ge SWS with the tapered conical nanopillar shape as function of its height, and (c) electric field intensity distribution of the Ge SWS at a wavelength of 1000 nm at normal incidence. The measured reflectance spectra of the corresponding structures are shown in (iv) of (a). The three-dimensional simulation model with a cone-shaped structure used in this calculation is shown in the inset of (b).

Fig. 6
Fig. 6

(a) Measured reflectance of the optimized Ge SWS at 15 min of etching time under different angles of the incident light for a wavelength of 633 nm, (b) contour plot of calculated angle dependent reflectance spectra of the optimized Ge SWS, and (c) photograph images of (i) Ge substrate and (ii) optimized Ge SWS for the samples (left) and the lower-magnified 30°-tilted side view SEM image of (ii) (right).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R SWR = R(λ)F(λ) Q i (λ) F(λ) Q i (λ)

Metrics