Abstract

In this paper we calculated, for the first time to the best of our knowledge, the cross relaxation parameter of Tm3+ ions in tellurite glasses over a wide range of concentrations: from 0.36 mol% up to 10 mol%. A new measurement approach based on emission spectra monitoring is proposed. This method is very simple and allows to measure even very highly doped samples. The obtained values of cross-relaxation parameter show a linear dependence with respect to dopant concentration over the full investigated interval, suggesting a dipole-dipole interaction process. The measured slope is 1.81x10−17 cm3 s−1 mol%−1.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
    [CrossRef]
  2. S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
    [CrossRef] [PubMed]
  3. J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 µm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
    [CrossRef]
  4. E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
    [CrossRef]
  5. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2004).
  6. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5- µm emission in Er3+ -doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
    [CrossRef]
  7. T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
    [CrossRef]
  8. J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
    [CrossRef]
  9. Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
    [CrossRef]
  10. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient 2 μm doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
    [CrossRef] [PubMed]
  11. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
    [CrossRef]
  12. A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
    [CrossRef]
  13. R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12: Tm: Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
    [CrossRef]
  14. C. A. Evans, Z. Ikonić, B. Richards, P. Harrison, and A. Jha, “Theoretical modeling of a 2 μm Tm3+ doped Tellurite fiber laser: the influence of cross relaxation,” J. Lightwave Technol. 27(18), 4026–4032 (2009).
    [CrossRef]
  15. D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
    [CrossRef]
  16. H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).
  17. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
    [CrossRef]
  18. H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
    [CrossRef]
  19. J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
    [CrossRef]
  20. J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
    [CrossRef] [PubMed]
  21. J. Wu, S. Jiang, T. Qiu, M. Morrell, A. Schulzgen, and N. Peyghambarian, “Cross-relaxation energy transfer in Tm3+ doped tellurite glass,” in Optical Components and Materials II (San Jose, CA, USA, 2005) 152–161.
  22. G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
    [CrossRef] [PubMed]
  23. C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991).
    [CrossRef]
  24. C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9(2), 147–154 (1991).
    [CrossRef]
  25. F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001).
    [CrossRef]
  26. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
    [CrossRef]

2010 (2)

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[CrossRef]

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

2009 (3)

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

C. A. Evans, Z. Ikonić, B. Richards, P. Harrison, and A. Jha, “Theoretical modeling of a 2 μm Tm3+ doped Tellurite fiber laser: the influence of cross relaxation,” J. Lightwave Technol. 27(18), 4026–4032 (2009).
[CrossRef]

2008 (1)

2007 (2)

J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
[CrossRef] [PubMed]

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[CrossRef] [PubMed]

2006 (3)

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

2004 (1)

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

2003 (1)

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[CrossRef]

2002 (2)

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[CrossRef] [PubMed]

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[CrossRef]

2001 (1)

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001).
[CrossRef]

2000 (1)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5- µm emission in Er3+ -doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[CrossRef]

1999 (1)

1994 (1)

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
[CrossRef]

1992 (1)

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12: Tm: Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[CrossRef]

1991 (2)

C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991).
[CrossRef]

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9(2), 147–154 (1991).
[CrossRef]

1989 (1)

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 µm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
[CrossRef]

1988 (1)

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Allain, J. Y.

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 µm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
[CrossRef]

Auzel, F.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[CrossRef]

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001).
[CrossRef]

Balda, R.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

Baldacchini, G.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[CrossRef]

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001).
[CrossRef]

Barnes, N. P.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

Baxter, G. W.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

Binks, D.

Blanc, W.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

Bonfigli, F.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001).
[CrossRef]

Boulon, G.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[CrossRef]

Burrus, C. A.

C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991).
[CrossRef]

Caponi, R.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Chang, J.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[CrossRef]

Chaussedent, S.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

Chen, G. X.

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[CrossRef] [PubMed]

Chen, Q.

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

Collins, S. F.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

de Camargo, A. S. S.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[CrossRef]

de Oliveira, S. L.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[CrossRef]

de Sousa, D. F.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[CrossRef]

Desurvire, E.

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9(2), 147–154 (1991).
[CrossRef]

DiGiovanni, D.

C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991).
[CrossRef]

Dussardier, B.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

Dutta, N. K.

C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991).
[CrossRef]

Evans, C. A.

Fernandez, J.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

Ferrari, M.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

Ferraris, M.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Gagliari, S.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001).
[CrossRef]

Gamulin, O.

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

Gebavi, H.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

Geng, J.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

Gibbs, W. E. K.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

Giles, C. R.

C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991).
[CrossRef]

C. R. Giles and E. Desurvire, “Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers,” J. Lightwave Technol. 9(2), 147–154 (1991).
[CrossRef]

Hanna, D. C.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Harrison, P.

Hewak, D. W.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[CrossRef]

Huang, Q.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[CrossRef]

Ikonic, Z.

Ivanda, M.

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

Jackson, S. D.

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[CrossRef] [PubMed]

S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
[CrossRef]

Jani, M. G.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12: Tm: Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[CrossRef]

Jauncey, I. M.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Jha, A.

Jiang, S.

J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
[CrossRef] [PubMed]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

Jiang, Z. H.

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[CrossRef] [PubMed]

King, T. A.

Kokta, M.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12: Tm: Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[CrossRef]

Komukai, T.

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
[CrossRef]

Lauto, A.

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[CrossRef] [PubMed]

Laversenne, L.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[CrossRef]

Liao, G.

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

Liu, Z.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[CrossRef]

Lousteau, J.

Luo, T.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

Milanese, D.

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

Miyajima, Y.

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
[CrossRef]

Monerie, M.

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 µm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
[CrossRef]

Monnom, G.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Naftaly, M.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5- µm emission in Er3+ -doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[CrossRef]

Ng, L. N.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Nilsson, J.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Nunes, L. A. O.

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[CrossRef]

Pagano, A.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Percival, R. M.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Perry, I. R.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Petrin, R. R.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12: Tm: Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[CrossRef]

Peyghambarian, N.

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

Poignant, H.

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 µm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
[CrossRef]

Potenza, M.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Powell, R. C.

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12: Tm: Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[CrossRef]

Raybon, G.

C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991).
[CrossRef]

Richards, B.

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Shen, S.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5- µm emission in Er3+ -doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[CrossRef]

Simpson, D. A.

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Smart, R. G.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Sordo, B.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Suni, P. J.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Taccheo, S.

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

Taylor, E. R. M.

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Townsend, J. E.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Tropper, A. C.

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

Tsang, Y.

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

Wang, Q.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[CrossRef]

Wu, J.

J. Wu, Z. Yao, J. Zong, and S. Jiang, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
[CrossRef] [PubMed]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

Yamamoto, T.

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
[CrossRef]

Yang, G. F.

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[CrossRef] [PubMed]

Yao, Z.

Yu, G.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[CrossRef]

Zhang, Q. Y.

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[CrossRef] [PubMed]

Zhang, X.

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[CrossRef]

Zong, J.

Electron. Lett. (3)

D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, “Continuous-wave oscillation of a monomode thulium-doped fibre laser,” Electron. Lett. 24(19), 1222–1223 (1988).
[CrossRef]

J. Y. Allain, M. Monerie, and H. Poignant, “Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 µm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25(24), 1660–1662 (1989).
[CrossRef]

T. Yamamoto, Y. Miyajima, and T. Komukai, “1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm,” Electron. Lett. 30(3), 220–221 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped tellurite fiber amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

C. R. Giles, C. A. Burrus, D. DiGiovanni, N. K. Dutta, and G. Raybon, “Characterization of erbium-doped fibers and application to modeling 980-nm and 1480-nm pumped amplifiers,” IEEE Photon. Technol. Lett. 3(4), 363–365 (1991).
[CrossRef]

J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2 µm germanate fiber laser,” IEEE Photon. Technol. Lett. 18(2), 334–336 (2006).
[CrossRef]

J. Appl. Phys. (1)

H. Gebavi, D. Milanese, R. Balda, S. Chaussedent, M. Ferrari, J. Fernandez, and M. Ferraris, “Spectroscopy and optical characterization of thulium doped TZN glasses,” J. Appl. Phys. 43, 135104 (2010).

J. Fluoresc. (1)

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[CrossRef] [PubMed]

J. Lightwave Technol. (3)

J. Lumin. (1)

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001).
[CrossRef]

J. Non-Cryst. Solids (2)

H. Gebavi, D. Milanese, G. Liao, Q. Chen, M. Ferraris, M. Ivanda, O. Gamulin, and S. Taccheo, “Spectroscopic investigation and optical characterization of novel highly thulium doped tellurite glasses,” J. Non-Cryst. Solids 355(9), 548–555 (2009).
[CrossRef]

D. A. Simpson, G. W. Baxter, S. F. Collins, W. E. K. Gibbs, W. Blanc, B. Dussardier, and G. Monnom, “Energy transfer up-conversion in Tm3+-doped silica fiber,” J. Non-Cryst. Solids 352(2), 136–141 (2006).
[CrossRef]

J. Phys. Condens. Matter (1)

A. S. S. de Camargo, S. L. de Oliveira, D. F. de Sousa, L. A. O. Nunes, and D. W. Hewak, “Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass,” J. Phys. Condens. Matter 14(41), 9495–9505 (2002).
[CrossRef]

Laser Phys. (1)

Q. Huang, Q. Wang, J. Chang, X. Zhang, Z. Liu, and G. Yu, “Optical parameters and upconversion fluorescence in Tm3+/Yb3+ co-doped tellurite glass,” Laser Phys. 20(4), 865–870 (2010).
[CrossRef]

Lasers Surg. Med. (1)

S. D. Jackson and A. Lauto, “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).
[CrossRef] [PubMed]

Opt. Lett. (2)

Opt. Mater. (2)

R. R. Petrin, M. G. Jani, R. C. Powell, and M. Kokta, “Spectral dynamics of laser pumped Y3Al5O12: Tm: Ho lasers,” Opt. Mater. 1(2), 111–124 (1992).
[CrossRef]

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[CrossRef]

Phys. Rev. B (1)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5- µm emission in Er3+ -doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[CrossRef]

Other (2)

M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge University Press, 2004).

J. Wu, S. Jiang, T. Qiu, M. Morrell, A. Schulzgen, and N. Peyghambarian, “Cross-relaxation energy transfer in Tm3+ doped tellurite glass,” in Optical Components and Materials II (San Jose, CA, USA, 2005) 152–161.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simplified energy level diagram of Tm3+ ion and scheme of the cross-relaxation process involving two Tm ions.

Fig. 2
Fig. 2

Measured lifetimes for: (a) 3F4 level, and (b) 3H4 level versus Tm3+ concentration.

Fig. 3
Fig. 3

(a) Emission spectra, inset magnifies the of 3H43F4 transition at 1.47 μm; (b) Ratio between the emission from 3F4 and 3H4 levels.

Fig. 4
Fig. 4

Cross-relaxation parameter versus Tm concentration.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d N 0 dt = W 03 N 0 + N 3 τ 30 + N 1 τ 1 C R N 3 N 0
d N 1 dt = N 3 τ 31 N 1 τ 1 +2 C R N 3 N 0
d N 3 dt = W 03 N 0 N 3 τ 30 N 3 τ 31 C R N 3 N 0
C R = 1 N 0 ( 1 τ 3 + 1 τ 3 * )
C R = 1 2 N 0 [ 1 τ 31 + N 1 N 3 τ 1 ]
σ e,ij ( λ p,ij )=K λ p,ij 4 A i,j,norm n 2 ( λ p,ij ) τ ij =H Φ ij ( λ p,ij ) N i Δν
N i τ ij Φ ij ( λ p,ij ) Δ ν p λ p,ij 4 A ij,norm n 2 ( λ p,ij )
C R = β 31 2 N 0 τ 3 [ Δ ν p,31 Φ 10 λ p,31 4 A 10,norm n 2 ( λ p,10 ) Δ ν p,10 Φ 31 λ 4 p,10 A 31,norm n 2 ( λ p,31 ) τ 1,0 τ 1 1 ]
τ= τ 0 ( 1+ 9 2π ( N N q ) 2 )
C R = 1 2 N 0 τ 31 [ kR1 ]

Metrics