T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[Crossref]
[PubMed]
J. Yoo, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “Increasing the field-of-view of dynamic cardiac OCT via post-acquisition mosaicing without affecting frame-rate or spatial resolution,” Biomed. Opt. Express 2(9), 2614–2622 (2011).
[Crossref]
[PubMed]
J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient feature region: a new method for retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 15(2), 221–232 (2011).
[Crossref]
[PubMed]
Y. Li, G. Gregori, R. W. Knighton, B. J. Lujan, and P. J. Rosenfeld, “Registration of OCT fundus images with color fundus photographs based on blood vessel ridges,” Opt. Express 19(1), 7–16 (2011).
[Crossref]
[PubMed]
G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]
Q. Yang, C. A. Reisman, Z. G. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. P. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
[Crossref]
[PubMed]
Z. Yehoshua, P. J. Rosenfeld, G. Gregori, and F. Penha, “Spectral domain optical coherence tomography imaging of dry age-related macular degeneration,” Ophthalmic Surg. Lasers Imaging 41(6Suppl), S6–S14 (2010).
[Crossref]
[PubMed]
B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref]
[PubMed]
Z. Hu, M. Niemeijer, M. D. Abràmoft, K. Lee, and M. K. Garvin, “Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 33–40 (2010).
[PubMed]
X. Fang, B. Luo, H. Zhao, J. Tang, and S. Zhai, “New multi-resolution image stitching with local and global alignment,” IET Comput. Vision 4(4), 231–246 (2010).
[Crossref]
M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[Crossref]
[PubMed]
S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[Crossref]
[PubMed]
Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).
T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express 17(18), 15659–15669 (2009).
[Crossref]
[PubMed]
S. Lee, M. D. Abramoff, and J. M. Reinhardt, “Retinal image mosaicing using the radial distortion correction model - art. no. 691435,” Proc. SPIE 6914, 91435 (2008).
B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[Crossref]
[PubMed]
M. Niemeijer, M. K. Garvin, B. V. Ginneken, M. Sonka, and M. D. Abramoff, “Vessel segmentation in 3D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).
G. H. Yang, C. V. Stewart, M. Sofka, and C. L. Tsai, “Registration of challenging image pairs: initialization, estimation, and decision,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007).
[Crossref]
[PubMed]
W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[Crossref]
T. Chanwimaluang, G. L. Fan, and S. R. Fransen, “Hybrid retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006).
[Crossref]
[PubMed]
P. C. Cattin, H. Bay, L. Van Gool, and G. Szekely, “Retina mosaicing using local features,” Med. Image Comput. Comput. Assist. Interv. 4191, 185–192 (2006).
M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref]
[PubMed]
D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]
A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[Crossref]
A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: Mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[Crossref]
H. Y. Shum and R. Szeliski, “Construction of panoramic image mosaics with global and local alignment,” Int. J. Comput. Vis. 36(2), 101–130 (2000).
[Crossref]
J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref]
D. E. Becker, A. Can, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination,” IEEE Trans. Biomed. Eng. 45(1), 105–118 (1998).
[Crossref]
[PubMed]
A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
[PubMed]
D. L. Milgram, “Computer Methods for Creating Photomosaics,” IEEE Trans. Comput. C-24(11), 1113–1119 (1975).
[Crossref]
M. Niemeijer, M. K. Garvin, B. V. Ginneken, M. Sonka, and M. D. Abramoff, “Vessel segmentation in 3D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).
S. Lee, M. D. Abramoff, and J. M. Reinhardt, “Retinal image mosaicing using the radial distortion correction model - art. no. 691435,” Proc. SPIE 6914, 91435 (2008).
Z. Hu, M. Niemeijer, M. D. Abràmoft, K. Lee, and M. K. Garvin, “Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 33–40 (2010).
[PubMed]
W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[Crossref]
Q. Yang, C. A. Reisman, Z. G. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. P. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
[Crossref]
[PubMed]
M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref]
[PubMed]
B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref]
[PubMed]
B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref]
[PubMed]
P. C. Cattin, H. Bay, L. Van Gool, and G. Szekely, “Retina mosaicing using local features,” Med. Image Comput. Comput. Assist. Interv. 4191, 185–192 (2006).
D. E. Becker, A. Can, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination,” IEEE Trans. Biomed. Eng. 45(1), 105–118 (1998).
[Crossref]
[PubMed]
B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[Crossref]
[PubMed]
M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[Crossref]
[PubMed]
B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref]
[PubMed]
A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[Crossref]
A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: Mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[Crossref]
D. E. Becker, A. Can, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination,” IEEE Trans. Biomed. Eng. 45(1), 105–118 (1998).
[Crossref]
[PubMed]
P. C. Cattin, H. Bay, L. Van Gool, and G. Szekely, “Retina mosaicing using local features,” Med. Image Comput. Comput. Assist. Interv. 4191, 185–192 (2006).
Q. Yang, C. A. Reisman, Z. G. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. P. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
[Crossref]
[PubMed]
T. Chanwimaluang, G. L. Fan, and S. R. Fransen, “Hybrid retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006).
[Crossref]
[PubMed]
J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient feature region: a new method for retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 15(2), 221–232 (2011).
[Crossref]
[PubMed]
A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
[PubMed]
J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient feature region: a new method for retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 15(2), 221–232 (2011).
[Crossref]
[PubMed]
B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[Crossref]
[PubMed]
M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[Crossref]
[PubMed]
B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref]
[PubMed]
M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[Crossref]
[PubMed]
W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[Crossref]
W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[Crossref]
T. Chanwimaluang, G. L. Fan, and S. R. Fransen, “Hybrid retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006).
[Crossref]
[PubMed]
X. Fang, B. Luo, H. Zhao, J. Tang, and S. Zhai, “New multi-resolution image stitching with local and global alignment,” IET Comput. Vision 4(4), 231–246 (2010).
[Crossref]
G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]
M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[Crossref]
[PubMed]
Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).
T. Chanwimaluang, G. L. Fan, and S. R. Fransen, “Hybrid retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006).
[Crossref]
[PubMed]
W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[Crossref]
B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref]
[PubMed]
Q. Yang, C. A. Reisman, Z. G. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. P. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
[Crossref]
[PubMed]
Z. Hu, M. Niemeijer, M. D. Abràmoft, K. Lee, and M. K. Garvin, “Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 33–40 (2010).
[PubMed]
M. Niemeijer, M. K. Garvin, B. V. Ginneken, M. Sonka, and M. D. Abramoff, “Vessel segmentation in 3D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).
M. Niemeijer, M. K. Garvin, B. V. Ginneken, M. Sonka, and M. D. Abramoff, “Vessel segmentation in 3D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).
M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref]
[PubMed]
Y. Li, G. Gregori, R. W. Knighton, B. J. Lujan, and P. J. Rosenfeld, “Registration of OCT fundus images with color fundus photographs based on blood vessel ridges,” Opt. Express 19(1), 7–16 (2011).
[Crossref]
[PubMed]
G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]
Z. Yehoshua, P. J. Rosenfeld, G. Gregori, and F. Penha, “Spectral domain optical coherence tomography imaging of dry age-related macular degeneration,” Ophthalmic Surg. Lasers Imaging 41(6Suppl), S6–S14 (2010).
[Crossref]
[PubMed]
Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).
S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005).
[Crossref]
[PubMed]
G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]
M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[Crossref]
[PubMed]
Q. Yang, C. A. Reisman, Z. G. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. P. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
[Crossref]
[PubMed]
B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[Crossref]
[PubMed]
B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[Crossref]
[PubMed]
Q. Yang, C. A. Reisman, Z. G. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. P. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
[Crossref]
[PubMed]
Z. Hu, M. Niemeijer, M. D. Abràmoft, K. Lee, and M. K. Garvin, “Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 33–40 (2010).
[PubMed]
B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref]
[PubMed]
Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).
A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
[PubMed]
B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[Crossref]
[PubMed]
Y. Li, G. Gregori, R. W. Knighton, B. J. Lujan, and P. J. Rosenfeld, “Registration of OCT fundus images with color fundus photographs based on blood vessel ridges,” Opt. Express 19(1), 7–16 (2011).
[Crossref]
[PubMed]
Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).
M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref]
[PubMed]
A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
[PubMed]
Z. Hu, M. Niemeijer, M. D. Abràmoft, K. Lee, and M. K. Garvin, “Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 33–40 (2010).
[PubMed]
S. Lee, M. D. Abramoff, and J. M. Reinhardt, “Retinal image mosaicing using the radial distortion correction model - art. no. 691435,” Proc. SPIE 6914, 91435 (2008).
Y. Li, G. Gregori, R. W. Knighton, B. J. Lujan, and P. J. Rosenfeld, “Registration of OCT fundus images with color fundus photographs based on blood vessel ridges,” Opt. Express 19(1), 7–16 (2011).
[Crossref]
[PubMed]
Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).
D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]
W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[Crossref]
Y. Li, G. Gregori, R. W. Knighton, B. J. Lujan, and P. J. Rosenfeld, “Registration of OCT fundus images with color fundus photographs based on blood vessel ridges,” Opt. Express 19(1), 7–16 (2011).
[Crossref]
[PubMed]
G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]
Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).
X. Fang, B. Luo, H. Zhao, J. Tang, and S. Zhai, “New multi-resolution image stitching with local and global alignment,” IET Comput. Vision 4(4), 231–246 (2010).
[Crossref]
A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
[PubMed]
W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[Crossref]
D. L. Milgram, “Computer Methods for Creating Photomosaics,” IEEE Trans. Comput. C-24(11), 1113–1119 (1975).
[Crossref]
Z. Hu, M. Niemeijer, M. D. Abràmoft, K. Lee, and M. K. Garvin, “Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 33–40 (2010).
[PubMed]
M. Niemeijer, M. K. Garvin, B. V. Ginneken, M. Sonka, and M. D. Abramoff, “Vessel segmentation in 3D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).
M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[Crossref]
[PubMed]
Z. Yehoshua, P. J. Rosenfeld, G. Gregori, and F. Penha, “Spectral domain optical coherence tomography imaging of dry age-related macular degeneration,” Ophthalmic Surg. Lasers Imaging 41(6Suppl), S6–S14 (2010).
[Crossref]
[PubMed]
M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[Crossref]
[PubMed]
B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref]
[PubMed]
B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[Crossref]
[PubMed]
S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[Crossref]
[PubMed]
G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]
S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005).
[Crossref]
[PubMed]
M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref]
[PubMed]
Q. Yang, C. A. Reisman, Z. G. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. P. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
[Crossref]
[PubMed]
S. Lee, M. D. Abramoff, and J. M. Reinhardt, “Retinal image mosaicing using the radial distortion correction model - art. no. 691435,” Proc. SPIE 6914, 91435 (2008).
Q. Yang, C. A. Reisman, Z. G. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. P. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
[Crossref]
[PubMed]
M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[Crossref]
[PubMed]
Y. Li, G. Gregori, R. W. Knighton, B. J. Lujan, and P. J. Rosenfeld, “Registration of OCT fundus images with color fundus photographs based on blood vessel ridges,” Opt. Express 19(1), 7–16 (2011).
[Crossref]
[PubMed]
G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]
Z. Yehoshua, P. J. Rosenfeld, G. Gregori, and F. Penha, “Spectral domain optical coherence tomography imaging of dry age-related macular degeneration,” Ophthalmic Surg. Lasers Imaging 41(6Suppl), S6–S14 (2010).
[Crossref]
[PubMed]
A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[Crossref]
A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: Mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[Crossref]
D. E. Becker, A. Can, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination,” IEEE Trans. Biomed. Eng. 45(1), 105–118 (1998).
[Crossref]
[PubMed]
S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[Crossref]
[PubMed]
J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref]
B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref]
[PubMed]
M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[Crossref]
[PubMed]
H. Y. Shum and R. Szeliski, “Construction of panoramic image mosaics with global and local alignment,” Int. J. Comput. Vis. 36(2), 101–130 (2000).
[Crossref]
B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[Crossref]
[PubMed]
G. H. Yang, C. V. Stewart, M. Sofka, and C. L. Tsai, “Registration of challenging image pairs: initialization, estimation, and decision,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007).
[Crossref]
[PubMed]
M. Niemeijer, M. K. Garvin, B. V. Ginneken, M. Sonka, and M. D. Abramoff, “Vessel segmentation in 3D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).
G. H. Yang, C. V. Stewart, M. Sofka, and C. L. Tsai, “Registration of challenging image pairs: initialization, estimation, and decision,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007).
[Crossref]
[PubMed]
A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: Mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[Crossref]
A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[Crossref]
P. C. Cattin, H. Bay, L. Van Gool, and G. Szekely, “Retina mosaicing using local features,” Med. Image Comput. Comput. Assist. Interv. 4191, 185–192 (2006).
H. Y. Shum and R. Szeliski, “Construction of panoramic image mosaics with global and local alignment,” Int. J. Comput. Vis. 36(2), 101–130 (2000).
[Crossref]
A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: Mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[Crossref]
A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[Crossref]
D. E. Becker, A. Can, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination,” IEEE Trans. Biomed. Eng. 45(1), 105–118 (1998).
[Crossref]
[PubMed]
X. Fang, B. Luo, H. Zhao, J. Tang, and S. Zhai, “New multi-resolution image stitching with local and global alignment,” IET Comput. Vision 4(4), 231–246 (2010).
[Crossref]
M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref]
[PubMed]
J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient feature region: a new method for retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 15(2), 221–232 (2011).
[Crossref]
[PubMed]
S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[Crossref]
[PubMed]
Q. Yang, C. A. Reisman, Z. G. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. P. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
[Crossref]
[PubMed]
A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
[PubMed]
G. H. Yang, C. V. Stewart, M. Sofka, and C. L. Tsai, “Registration of challenging image pairs: initialization, estimation, and decision,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007).
[Crossref]
[PubMed]
D. E. Becker, A. Can, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination,” IEEE Trans. Biomed. Eng. 45(1), 105–118 (1998).
[Crossref]
[PubMed]
P. C. Cattin, H. Bay, L. Van Gool, and G. Szekely, “Retina mosaicing using local features,” Med. Image Comput. Comput. Assist. Interv. 4191, 185–192 (2006).
A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
[PubMed]
G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]
Q. Yang, C. A. Reisman, Z. G. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. P. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
[Crossref]
[PubMed]
M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref]
[PubMed]
M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref]
[PubMed]
J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref]
J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient feature region: a new method for retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 15(2), 221–232 (2011).
[Crossref]
[PubMed]
G. H. Yang, C. V. Stewart, M. Sofka, and C. L. Tsai, “Registration of challenging image pairs: initialization, estimation, and decision,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007).
[Crossref]
[PubMed]
Q. Yang, C. A. Reisman, Z. G. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. P. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
[Crossref]
[PubMed]
G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]
Z. Yehoshua, P. J. Rosenfeld, G. Gregori, and F. Penha, “Spectral domain optical coherence tomography imaging of dry age-related macular degeneration,” Ophthalmic Surg. Lasers Imaging 41(6Suppl), S6–S14 (2010).
[Crossref]
[PubMed]
Q. Yang, C. A. Reisman, Z. G. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. P. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
[Crossref]
[PubMed]
J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref]
X. Fang, B. Luo, H. Zhao, J. Tang, and S. Zhai, “New multi-resolution image stitching with local and global alignment,” IET Comput. Vision 4(4), 231–246 (2010).
[Crossref]
J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient feature region: a new method for retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 15(2), 221–232 (2011).
[Crossref]
[PubMed]
X. Fang, B. Luo, H. Zhao, J. Tang, and S. Zhai, “New multi-resolution image stitching with local and global alignment,” IET Comput. Vision 4(4), 231–246 (2010).
[Crossref]
J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient feature region: a new method for retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 15(2), 221–232 (2011).
[Crossref]
[PubMed]
M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[Crossref]
[PubMed]
S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[Crossref]
[PubMed]
D. E. Becker, A. Can, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination,” IEEE Trans. Biomed. Eng. 45(1), 105–118 (1998).
[Crossref]
[PubMed]
D. L. Milgram, “Computer Methods for Creating Photomosaics,” IEEE Trans. Comput. C-24(11), 1113–1119 (1975).
[Crossref]
J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient feature region: a new method for retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 15(2), 221–232 (2011).
[Crossref]
[PubMed]
T. Chanwimaluang, G. L. Fan, and S. R. Fransen, “Hybrid retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006).
[Crossref]
[PubMed]
A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[Crossref]
A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: Mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[Crossref]
G. H. Yang, C. V. Stewart, M. Sofka, and C. L. Tsai, “Registration of challenging image pairs: initialization, estimation, and decision,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007).
[Crossref]
[PubMed]
X. Fang, B. Luo, H. Zhao, J. Tang, and S. Zhai, “New multi-resolution image stitching with local and global alignment,” IET Comput. Vision 4(4), 231–246 (2010).
[Crossref]
H. Y. Shum and R. Szeliski, “Construction of panoramic image mosaics with global and local alignment,” Int. J. Comput. Vis. 36(2), 101–130 (2000).
[Crossref]
D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[Crossref]
A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
[PubMed]
B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[Crossref]
[PubMed]
J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[Crossref]
M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[Crossref]
[PubMed]
W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[Crossref]
P. C. Cattin, H. Bay, L. Van Gool, and G. Szekely, “Retina mosaicing using local features,” Med. Image Comput. Comput. Assist. Interv. 4191, 185–192 (2006).
Z. Hu, M. Niemeijer, M. D. Abràmoft, K. Lee, and M. K. Garvin, “Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 33–40 (2010).
[PubMed]
Z. Yehoshua, P. J. Rosenfeld, G. Gregori, and F. Penha, “Spectral domain optical coherence tomography imaging of dry age-related macular degeneration,” Ophthalmic Surg. Lasers Imaging 41(6Suppl), S6–S14 (2010).
[Crossref]
[PubMed]
G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]
Q. Yang, C. A. Reisman, Z. G. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. P. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
[Crossref]
[PubMed]
B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref]
[PubMed]
T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[Crossref]
[PubMed]
S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005).
[Crossref]
[PubMed]
Y. Li, G. Gregori, R. W. Knighton, B. J. Lujan, and P. J. Rosenfeld, “Registration of OCT fundus images with color fundus photographs based on blood vessel ridges,” Opt. Express 19(1), 7–16 (2011).
[Crossref]
[PubMed]
T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express 17(18), 15659–15669 (2009).
[Crossref]
[PubMed]
M. Niemeijer, M. K. Garvin, B. V. Ginneken, M. Sonka, and M. D. Abramoff, “Vessel segmentation in 3D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).
Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).
S. Lee, M. D. Abramoff, and J. M. Reinhardt, “Retinal image mosaicing using the radial distortion correction model - art. no. 691435,” Proc. SPIE 6914, 91435 (2008).
M. Sofka, Y. Gehua, and C. V. Stewart, “Simultaneous Covariance Driven Correspondence (CDC) and Transformation Estimation in the Expectation Maximization Framework,” Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on 1–8 (2007).
S. Lee, M. D. Abramoff, and J. M. Reinhardt, “Retinal image mosaicing using the radial distortion correction model,” Proc. SPIE Medical Imaging 6914, 91435 (2008).
G. H. Yang and C. V. Stewart, “Covariance-driven mosaic formation from sparsely-overlapping image sets with application to retinal image mosaicing,” Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1, 804–810 (2004).
T. E. Choe, I. Cohen, M. Lee, and G. Medioni, “Optimal global mosaic generation from retinal images,” Proceedings of 18th International Conference on Pattern Recognition 3, 681–684 (2006).
R. Szeliski, “Image alignment and stitching: A tutorial,” MSR-TR-2004–92, Microsoft Research (2004).
Y. Yu and H. Peng, “Automated high speed stitching of large 3D microscopic images,” Proc. of IEEE 2011 International Symposium on Biomedical Imaging: From Nano to Macro 238–241 (2011).