Abstract

In this demonstration, we propose and demonstrate an adaptive long-reach passive optical network (LR-PON) using four-band orthogonal frequency division multiplexed (OFDM) channels. The downstream traffic rates from 6.25 to 40 Gb/s (using fixed quadrature amplitude modulation (QAM) level in the four OFDM bands) and from 9.37 to 40.3 Gb/s (using variable QAM levels in the four OFDM bands) can be achieved adaptively in the optical network units (ONUs) depending on different fiber transmission lengths from 0 to 100 km. For the upstream transmission, a 10 Gb/s 16-QAM OFDM signal with pre-emphasis is experimentally performed by using a 2.5 GHz directly modulated laser (DML). Based on the simulation and experimental results, the proposed adaptive four-band OFDM system could be a promising candidate for the future LR-PON.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Yeh, C. W. Chow, and Y. L. Liu, “Self-protected ring-star-architecture TDM passive optical network with triple-play management,” Opt. Commun. 284(13), 3248–3250 (2011).
    [CrossRef]
  2. P. P. Iannone and K. C. Reichmann, “Optical access beyond 10 Gb/s PON,” Proc. of ECOC, 2010, Invited Paper, Paper Tu.3.B.1.
  3. C. H. Yeh, C. W. Chow, Y. F. Wu, F. Y. Shih, and S. Chi, “Using Fabry-Perot laser diode and reflective semiconductor optical amplifier for long reach WDM-PON system,” Opt. Commun. 284(21), 5148–5152 (2011).
    [CrossRef]
  4. C. H. Yeh, C. W. Chow, and C. H. Hsu, “40 Gb/s time division multiplexed passive optical networks using downstream OOK and upstream OFDM modulations,” IEEE Photon. Technol. Lett. 22(2), 118–120 (2010).
    [CrossRef]
  5. C. W. Chow and C. H. Yeh, “40-Gb/s downstream DPSK and 40-Gb/s upstream OOK signal remodulation PON using reduced modulation index,” Opt. Express 18(25), 26046–26051 (2010).
    [CrossRef] [PubMed]
  6. C. W. Chow, L. Xu, C. H. Yeh, H. K. Tsang, W. Hofmann, and M. C. Amann, “40 Gb/s upstream transmitters using directly-modulated 1.55 μm VCSEL array for high-split-ratio PONs,” IEEE Photon. Technol. Lett. 22(5), 347–349 (2010).
    [CrossRef]
  7. H. H. Lee, P. P. Iannone, K. C. Richmann, and B. W. Kim, “A bidirectional SOA-Raman hybrid amplifier shared by 2.5 Gb/s, 60 km long-reach WDM-TDM PON,” Proc. of ECOC, 2008, Paper P.6.05.
  8. C. W. Chow and C. H. Yeh, “Mitigation of Rayleigh backscattering in 10-Gb/s downstream and 2.5-Gb/s upstream DWDM 100-km long-reach PONs,” Opt. Express 19(6), 4970–4976 (2011).
    [CrossRef] [PubMed]
  9. I. T. Monroy, F. Ohman, K. Yvind, R. Kjaer, C. Peucheret, A. M. J. Koonen, and P. Jeppesen, “85 km long reach PON system using a reflective SOA-EA modulator and distributed Raman fiber amplification,” IEEE LEOS Annual Meeting, 2006, Paper WEE4.
  10. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
    [CrossRef]
  11. N. Cvijetic, D. Qian, and J. Yu, “100 Gb/s optical access based on optical orthogonal frequency-division-multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
    [CrossRef]
  12. T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experiential demonstration of 10 Gb/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” Proc. of ECOC, 2008, Paper Th.3.F.1.
  13. L. Cheng, H. Wen, X. Zheng, H. Zhang, and B. Zhou, “Channel characteristic division OFDM-PON for next generation optical access,” Opt. Express 19(20), 19129–19134 (2011).
    [CrossRef] [PubMed]
  14. D.-Z. Hsu, C.-C. Wei, H.-Y. Chen, W.-Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Express 19(18), 17546–17556 (2011).
    [CrossRef] [PubMed]
  15. W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600 MS/s 30 mW 0.13 μm CMOS ADC array achieving over 60 dB SFDR with adaptive digital equalization,” Proc. IEEE (ISSCC), 82–83 (2009).
  16. P. L. Tien, Y. M. Lin, and M. C. Yuang, “A novel OFDMA-PON architecture toward seamless broadband and wireless integration,” Proc. of OFC, 2009, Paper MOV2.

2011

2010

C. H. Yeh, C. W. Chow, and C. H. Hsu, “40 Gb/s time division multiplexed passive optical networks using downstream OOK and upstream OFDM modulations,” IEEE Photon. Technol. Lett. 22(2), 118–120 (2010).
[CrossRef]

C. W. Chow and C. H. Yeh, “40-Gb/s downstream DPSK and 40-Gb/s upstream OOK signal remodulation PON using reduced modulation index,” Opt. Express 18(25), 26046–26051 (2010).
[CrossRef] [PubMed]

C. W. Chow, L. Xu, C. H. Yeh, H. K. Tsang, W. Hofmann, and M. C. Amann, “40 Gb/s upstream transmitters using directly-modulated 1.55 μm VCSEL array for high-split-ratio PONs,” IEEE Photon. Technol. Lett. 22(5), 347–349 (2010).
[CrossRef]

N. Cvijetic, D. Qian, and J. Yu, “100 Gb/s optical access based on optical orthogonal frequency-division-multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

2009

W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600 MS/s 30 mW 0.13 μm CMOS ADC array achieving over 60 dB SFDR with adaptive digital equalization,” Proc. IEEE (ISSCC), 82–83 (2009).

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

Amann, M. C.

C. W. Chow, L. Xu, C. H. Yeh, H. K. Tsang, W. Hofmann, and M. C. Amann, “40 Gb/s upstream transmitters using directly-modulated 1.55 μm VCSEL array for high-split-ratio PONs,” IEEE Photon. Technol. Lett. 22(5), 347–349 (2010).
[CrossRef]

Chang, Y.

W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600 MS/s 30 mW 0.13 μm CMOS ADC array achieving over 60 dB SFDR with adaptive digital equalization,” Proc. IEEE (ISSCC), 82–83 (2009).

Chen, B.-W.

W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600 MS/s 30 mW 0.13 μm CMOS ADC array achieving over 60 dB SFDR with adaptive digital equalization,” Proc. IEEE (ISSCC), 82–83 (2009).

Chen, H.-Y.

Chen, J.

Chen, W.-T.

W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600 MS/s 30 mW 0.13 μm CMOS ADC array achieving over 60 dB SFDR with adaptive digital equalization,” Proc. IEEE (ISSCC), 82–83 (2009).

Cheng, L.

Chi, S.

C. H. Yeh, C. W. Chow, Y. F. Wu, F. Y. Shih, and S. Chi, “Using Fabry-Perot laser diode and reflective semiconductor optical amplifier for long reach WDM-PON system,” Opt. Commun. 284(21), 5148–5152 (2011).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

Chiu, Y.

W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600 MS/s 30 mW 0.13 μm CMOS ADC array achieving over 60 dB SFDR with adaptive digital equalization,” Proc. IEEE (ISSCC), 82–83 (2009).

Chow, C. W.

C. W. Chow and C. H. Yeh, “Mitigation of Rayleigh backscattering in 10-Gb/s downstream and 2.5-Gb/s upstream DWDM 100-km long-reach PONs,” Opt. Express 19(6), 4970–4976 (2011).
[CrossRef] [PubMed]

C. H. Yeh, C. W. Chow, and Y. L. Liu, “Self-protected ring-star-architecture TDM passive optical network with triple-play management,” Opt. Commun. 284(13), 3248–3250 (2011).
[CrossRef]

C. H. Yeh, C. W. Chow, Y. F. Wu, F. Y. Shih, and S. Chi, “Using Fabry-Perot laser diode and reflective semiconductor optical amplifier for long reach WDM-PON system,” Opt. Commun. 284(21), 5148–5152 (2011).
[CrossRef]

C. H. Yeh, C. W. Chow, and C. H. Hsu, “40 Gb/s time division multiplexed passive optical networks using downstream OOK and upstream OFDM modulations,” IEEE Photon. Technol. Lett. 22(2), 118–120 (2010).
[CrossRef]

C. W. Chow and C. H. Yeh, “40-Gb/s downstream DPSK and 40-Gb/s upstream OOK signal remodulation PON using reduced modulation index,” Opt. Express 18(25), 26046–26051 (2010).
[CrossRef] [PubMed]

C. W. Chow, L. Xu, C. H. Yeh, H. K. Tsang, W. Hofmann, and M. C. Amann, “40 Gb/s upstream transmitters using directly-modulated 1.55 μm VCSEL array for high-split-ratio PONs,” IEEE Photon. Technol. Lett. 22(5), 347–349 (2010).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

Cvijetic, N.

N. Cvijetic, D. Qian, and J. Yu, “100 Gb/s optical access based on optical orthogonal frequency-division-multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

Hofmann, W.

C. W. Chow, L. Xu, C. H. Yeh, H. K. Tsang, W. Hofmann, and M. C. Amann, “40 Gb/s upstream transmitters using directly-modulated 1.55 μm VCSEL array for high-split-ratio PONs,” IEEE Photon. Technol. Lett. 22(5), 347–349 (2010).
[CrossRef]

Hsien, S.-K.

W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600 MS/s 30 mW 0.13 μm CMOS ADC array achieving over 60 dB SFDR with adaptive digital equalization,” Proc. IEEE (ISSCC), 82–83 (2009).

Hsu, C. H.

C. H. Yeh, C. W. Chow, and C. H. Hsu, “40 Gb/s time division multiplexed passive optical networks using downstream OOK and upstream OFDM modulations,” IEEE Photon. Technol. Lett. 22(2), 118–120 (2010).
[CrossRef]

Hsu, D.-Z.

Lee, Y.-P.

W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600 MS/s 30 mW 0.13 μm CMOS ADC array achieving over 60 dB SFDR with adaptive digital equalization,” Proc. IEEE (ISSCC), 82–83 (2009).

Li, W.-Y.

Liu, W.

W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600 MS/s 30 mW 0.13 μm CMOS ADC array achieving over 60 dB SFDR with adaptive digital equalization,” Proc. IEEE (ISSCC), 82–83 (2009).

Liu, Y. L.

C. H. Yeh, C. W. Chow, and Y. L. Liu, “Self-protected ring-star-architecture TDM passive optical network with triple-play management,” Opt. Commun. 284(13), 3248–3250 (2011).
[CrossRef]

Ma, G.-K.

W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600 MS/s 30 mW 0.13 μm CMOS ADC array achieving over 60 dB SFDR with adaptive digital equalization,” Proc. IEEE (ISSCC), 82–83 (2009).

Qian, D.

N. Cvijetic, D. Qian, and J. Yu, “100 Gb/s optical access based on optical orthogonal frequency-division-multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

Shih, F. Y.

C. H. Yeh, C. W. Chow, Y. F. Wu, F. Y. Shih, and S. Chi, “Using Fabry-Perot laser diode and reflective semiconductor optical amplifier for long reach WDM-PON system,” Opt. Commun. 284(21), 5148–5152 (2011).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

Tsang, H. K.

C. W. Chow, L. Xu, C. H. Yeh, H. K. Tsang, W. Hofmann, and M. C. Amann, “40 Gb/s upstream transmitters using directly-modulated 1.55 μm VCSEL array for high-split-ratio PONs,” IEEE Photon. Technol. Lett. 22(5), 347–349 (2010).
[CrossRef]

Wang, C. H.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

Wei, C.-C.

Wen, H.

Wu, Y. F.

C. H. Yeh, C. W. Chow, Y. F. Wu, F. Y. Shih, and S. Chi, “Using Fabry-Perot laser diode and reflective semiconductor optical amplifier for long reach WDM-PON system,” Opt. Commun. 284(21), 5148–5152 (2011).
[CrossRef]

Xu, L.

C. W. Chow, L. Xu, C. H. Yeh, H. K. Tsang, W. Hofmann, and M. C. Amann, “40 Gb/s upstream transmitters using directly-modulated 1.55 μm VCSEL array for high-split-ratio PONs,” IEEE Photon. Technol. Lett. 22(5), 347–349 (2010).
[CrossRef]

Yang, T.-Y.

W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600 MS/s 30 mW 0.13 μm CMOS ADC array achieving over 60 dB SFDR with adaptive digital equalization,” Proc. IEEE (ISSCC), 82–83 (2009).

Yeh, C. H.

C. H. Yeh, C. W. Chow, Y. F. Wu, F. Y. Shih, and S. Chi, “Using Fabry-Perot laser diode and reflective semiconductor optical amplifier for long reach WDM-PON system,” Opt. Commun. 284(21), 5148–5152 (2011).
[CrossRef]

C. H. Yeh, C. W. Chow, and Y. L. Liu, “Self-protected ring-star-architecture TDM passive optical network with triple-play management,” Opt. Commun. 284(13), 3248–3250 (2011).
[CrossRef]

C. W. Chow and C. H. Yeh, “Mitigation of Rayleigh backscattering in 10-Gb/s downstream and 2.5-Gb/s upstream DWDM 100-km long-reach PONs,” Opt. Express 19(6), 4970–4976 (2011).
[CrossRef] [PubMed]

C. H. Yeh, C. W. Chow, and C. H. Hsu, “40 Gb/s time division multiplexed passive optical networks using downstream OOK and upstream OFDM modulations,” IEEE Photon. Technol. Lett. 22(2), 118–120 (2010).
[CrossRef]

C. W. Chow, L. Xu, C. H. Yeh, H. K. Tsang, W. Hofmann, and M. C. Amann, “40 Gb/s upstream transmitters using directly-modulated 1.55 μm VCSEL array for high-split-ratio PONs,” IEEE Photon. Technol. Lett. 22(5), 347–349 (2010).
[CrossRef]

C. W. Chow and C. H. Yeh, “40-Gb/s downstream DPSK and 40-Gb/s upstream OOK signal remodulation PON using reduced modulation index,” Opt. Express 18(25), 26046–26051 (2010).
[CrossRef] [PubMed]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

Yu, J.

N. Cvijetic, D. Qian, and J. Yu, “100 Gb/s optical access based on optical orthogonal frequency-division-multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

Zhang, H.

Zheng, X.

Zhou, B.

IEEE Commun. Mag.

N. Cvijetic, D. Qian, and J. Yu, “100 Gb/s optical access based on optical orthogonal frequency-division-multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

C. H. Yeh, C. W. Chow, and C. H. Hsu, “40 Gb/s time division multiplexed passive optical networks using downstream OOK and upstream OFDM modulations,” IEEE Photon. Technol. Lett. 22(2), 118–120 (2010).
[CrossRef]

C. W. Chow, L. Xu, C. H. Yeh, H. K. Tsang, W. Hofmann, and M. C. Amann, “40 Gb/s upstream transmitters using directly-modulated 1.55 μm VCSEL array for high-split-ratio PONs,” IEEE Photon. Technol. Lett. 22(5), 347–349 (2010).
[CrossRef]

Opt. Commun.

C. H. Yeh, C. W. Chow, and Y. L. Liu, “Self-protected ring-star-architecture TDM passive optical network with triple-play management,” Opt. Commun. 284(13), 3248–3250 (2011).
[CrossRef]

C. H. Yeh, C. W. Chow, Y. F. Wu, F. Y. Shih, and S. Chi, “Using Fabry-Perot laser diode and reflective semiconductor optical amplifier for long reach WDM-PON system,” Opt. Commun. 284(21), 5148–5152 (2011).
[CrossRef]

Opt. Express

Proc. IEEE

W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600 MS/s 30 mW 0.13 μm CMOS ADC array achieving over 60 dB SFDR with adaptive digital equalization,” Proc. IEEE (ISSCC), 82–83 (2009).

Other

P. L. Tien, Y. M. Lin, and M. C. Yuang, “A novel OFDMA-PON architecture toward seamless broadband and wireless integration,” Proc. of OFC, 2009, Paper MOV2.

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experiential demonstration of 10 Gb/s upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” Proc. of ECOC, 2008, Paper Th.3.F.1.

I. T. Monroy, F. Ohman, K. Yvind, R. Kjaer, C. Peucheret, A. M. J. Koonen, and P. Jeppesen, “85 km long reach PON system using a reflective SOA-EA modulator and distributed Raman fiber amplification,” IEEE LEOS Annual Meeting, 2006, Paper WEE4.

H. H. Lee, P. P. Iannone, K. C. Richmann, and B. W. Kim, “A bidirectional SOA-Raman hybrid amplifier shared by 2.5 Gb/s, 60 km long-reach WDM-TDM PON,” Proc. of ECOC, 2008, Paper P.6.05.

P. P. Iannone and K. C. Reichmann, “Optical access beyond 10 Gb/s PON,” Proc. of ECOC, 2010, Invited Paper, Paper Tu.3.B.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Proposed LR-PON using four-band OFDM with 10 GHz bandwidth for adaptive downstream traffic rate.

Fig. 2
Fig. 2

Simulated BER performances of 40 Gb/s OFDM downstream using proposed 16-QAM OFDM four-band channels at the B2B, 20 and 30 km SMF transmissions, respectively.

Fig. 3
Fig. 3

Simulated BER measurements of adaptive downstream rate of 6.25 to 40 Gb/s by dynamically receiving different multi-band OFDM channels under the different SMF lengths of 20 to 100 km.

Fig. 4
Fig. 4

Corresponding constellation diagrams of four-, three-, two- and one-band OFDM channels used, respectively, under the SMF length of 20, 40, 60 and 100 km long.

Fig. 5
Fig. 5

Simulated BER performances of 40.3 Gb/s OFDM downstream using proposed 64-QAM, 32-QAM, 16-QAM and 4-QAM OFDM four-band channels at the B2B, 20, 30 and 40 km SMF transmissions, respectively.

Fig. 6
Fig. 6

Simulated BER measurements of adaptive downstream rate of 6.25 to 40 Gb/s by dynamically receiving different multi-band OFDM channels under the different SMF lengths of 20 to 100 km.

Fig. 7
Fig. 7

Corresponding constellation diagrams of four-, three-, two- and one-band OFDM channels used, respectively, under the SMF length of 30, 40, 50 and 100 km long.

Fig. 8
Fig. 8

BER measurements of each OFDM channel at the B2B and 20 km fiber transmission, when each channel is modulated at 16-QAM format.

Fig. 9
Fig. 9

The upstream SNR of each OFDM subcarrier within 2.5 GHz bandwidth at the B2B, 20, 50, 75 and 100 km fiber transmissions, respectively, at optical received power of −14 dBm without pre-emphasis.

Fig. 10
Fig. 10

Experimental BER measurements of 10 Gb/s upstream traffic using 16-QAM OFDM modulation without pre-emphasis at the B2B, 20, 50, 75, and 100 km SMF transmissions, respectively.

Fig. 11
Fig. 11

The upstream SNR of each OFDM subcarrier within 2.5 GHz bandwidth at the B2B, 20, 50, 75 and 100 km fiber transmissions, respectively, at optical received power of −14 dBm with pre-emphasis.

Fig. 12
Fig. 12

Experimental BER measurements of 10 Gb/s upstream traffic using 16-QAM OFDM modulation with pre-emphasis at the B2B, 20, 50, 75, and 100 km SMF transmissions, respectively. Inserts are the corresponding constellation diagrams.

Metrics