Abstract

In this work anisotropic porous silicon is investigated as a material for optical sensing. Birefringence and sensitivity of the anisotropic porous silicon membranes are thoroughly studied in the framework of Bruggeman model which is extended to incorporate the influence of environment effects, such as silicon oxidation. The membranes were also characterized optically demonstrating sensitivity as high as 1245 nm/RIU at 1500 nm. This experimental value only agrees with the theory when it takes into consideration the effect of silicon oxidation. Furthermore we demonstrate that oxidized porous silicon membranes have optical parameters with long term stability. Finally, we developed a new model to determine the contribution of the main depolarization sources to the overall depolarization process, and how it influences the measured spectra and the resolution of birefringence measurements.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
    [CrossRef] [PubMed]
  2. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
    [CrossRef] [PubMed]
  3. S. Patskovsky, M. Meunier, P. N. Prasad, and A. V. Kabashin, “Self-noise-filtering phase-sensitive surface plasmon resonance biosensing,” Opt. Express 18(14), 14353–14358 (2010).
    [CrossRef] [PubMed]
  4. F. Prieto, L. Lechuga, A. Calle, A. Llobera, and C. Dominguez, “Optimized silicon antiresonant reflecting optical waveguides for sensing applications,” J. Lightwave Technol. 19(1), 75–83 (2001).
    [CrossRef]
  5. X. Wei and S. M. Weiss, “Guided mode biosensor based on grating coupled porous silicon waveguide,” Opt. Express 19(12), 11330–11339 (2011).
    [CrossRef] [PubMed]
  6. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [CrossRef] [PubMed]
  7. T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photon. J. 1(3), 197–204 (2009).
    [CrossRef]
  8. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
    [CrossRef] [PubMed]
  9. T. Xu, N. Zhu, M. Y. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express 18(6), 5420–5425 (2010).
    [CrossRef] [PubMed]
  10. C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area,” Opt. Express 18(26), 27930–27937 (2010).
    [CrossRef] [PubMed]
  11. O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38(1–3), 1–126 (2000).
    [CrossRef]
  12. V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. A. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
    [CrossRef] [PubMed]
  13. V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000).
    [CrossRef]
  14. M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103(8), 083516 (2008).
    [CrossRef]
  15. T. Jalkanen, V. Torres-Costa, J. Salonen, M. Björkqvist, E. Mäkilä, J. M. Martínez-Duart, and V. P. Lehto, “Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors,” Opt. Express 17(7), 5446–5456 (2009).
    [CrossRef] [PubMed]
  16. E. Gross, D. Kovalev, N. Künzner, V. Y. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
    [CrossRef]
  17. M. Kompan, J. Salonen, and I. Shabanov, “Anomalous birefringence of light in free-standing samples of porous silicon,” J. Exp. Theor. Phys. 90(2), 324–329 (2000).
    [CrossRef]
  18. B-H. O, R. Liu, Y. Y. Li, M. Sailor, and Y. Fainman, “Vapor sensor realized in an ultracompact polarization interferometer built of a freestanding porous-silicon form birefringent film,” IEEE Photo. Technol. Lett. 15(6), 834–836 (2003).
    [CrossRef]
  19. R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71(8), R1– R22 (1992).
    [CrossRef]
  20. N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Y. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefringence in anisotropically nanostructured silicon,” Opt. Lett. 26(16), 1265–1267 (2001).
    [CrossRef] [PubMed]
  21. N. Künzner, J. Diener, E. Gross, D. Kovalev, V. Y. Timoshenko, and M. Fujii, “Form birefringence of anisotropically nanostructured silicon,” Phys. Rev. B 71(19), 195304 (2005).
    [CrossRef]
  22. V. Y. Timoshenko, L. A. Osminkina, A. I. Efimova, L. A. Golovan, P. K. Kashkarov, D. Kovalev, N. Künzner, E. Gross, J. Diener, and F. Koch, “Anisotropy of optical absorption in birefringent porous silicon,” Phys. Rev. B 67(11), 113405 (2003).
    [CrossRef]
  23. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
    [CrossRef] [PubMed]
  24. H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31(3), 401–406 (1965).
    [CrossRef]
  25. T. C. Choy, “Effective Medium Theory, Principles and Applications,” Oxford University Press, (1999).
  26. K. Nishida, M. Fujii, S. Hayashi, and J. Diener, “Temperature dependence of optical anisotropy of birefringent porous silicon,” Appl. Phys. Lett. 96(24), 243102 (2010).
    [CrossRef]
  27. V. Kochergin, M. Christophersen, and H. Föll, “Effective medium approach for calculations of optical anisotropy in porous materials,” Appl. Phys. B 79, 731–739 (2004).
    [CrossRef]
  28. K. A. Kilian, T. Böcking, and J. J. Gooding, “The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors,” Chem. Commun. (Camb.) (6): 630–640 (2009).
    [CrossRef] [PubMed]
  29. I. Suárez, V. Chirvony, D. Hill, and J. Martínez-Pastor, “Simulation of surface-modified porous silicon photonic crystals for biosensing applications,” Phot. Nano. Fund. Appl., doi:10.1016, (2011)
  30. M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003).
    [CrossRef]
  31. A. E. Pap, K. Kordás, T. F. George, and S. Leppävuori, “Thermal Oxidation of Porous Silicon: Study on Reaction Kinetics,” J. Phys. Chem. B 108(34), 12744–12747 (2004).
    [CrossRef]
  32. S. M. Nee, “Depolarization and retardation of a birefringent slab,” J. Opt. Soc. Am. A 17(11), 2067–2073 (2000).
    [CrossRef] [PubMed]
  33. K. H. Jun and K. S. Lim, “Simulation of the depolarization effect in porous silicon,” Appl. Opt. 42(7), 1211–1215 (2003).
    [CrossRef] [PubMed]

2011

2010

2009

K. A. Kilian, T. Böcking, and J. J. Gooding, “The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors,” Chem. Commun. (Camb.) (6): 630–640 (2009).
[CrossRef] [PubMed]

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photon. J. 1(3), 197–204 (2009).
[CrossRef]

T. Jalkanen, V. Torres-Costa, J. Salonen, M. Björkqvist, E. Mäkilä, J. M. Martínez-Duart, and V. P. Lehto, “Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors,” Opt. Express 17(7), 5446–5456 (2009).
[CrossRef] [PubMed]

2008

M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103(8), 083516 (2008).
[CrossRef]

2007

2005

N. Künzner, J. Diener, E. Gross, D. Kovalev, V. Y. Timoshenko, and M. Fujii, “Form birefringence of anisotropically nanostructured silicon,” Phys. Rev. B 71(19), 195304 (2005).
[CrossRef]

2004

V. Kochergin, M. Christophersen, and H. Föll, “Effective medium approach for calculations of optical anisotropy in porous materials,” Appl. Phys. B 79, 731–739 (2004).
[CrossRef]

A. E. Pap, K. Kordás, T. F. George, and S. Leppävuori, “Thermal Oxidation of Porous Silicon: Study on Reaction Kinetics,” J. Phys. Chem. B 108(34), 12744–12747 (2004).
[CrossRef]

2003

K. H. Jun and K. S. Lim, “Simulation of the depolarization effect in porous silicon,” Appl. Opt. 42(7), 1211–1215 (2003).
[CrossRef] [PubMed]

M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003).
[CrossRef]

V. Y. Timoshenko, L. A. Osminkina, A. I. Efimova, L. A. Golovan, P. K. Kashkarov, D. Kovalev, N. Künzner, E. Gross, J. Diener, and F. Koch, “Anisotropy of optical absorption in birefringent porous silicon,” Phys. Rev. B 67(11), 113405 (2003).
[CrossRef]

B-H. O, R. Liu, Y. Y. Li, M. Sailor, and Y. Fainman, “Vapor sensor realized in an ultracompact polarization interferometer built of a freestanding porous-silicon form birefringent film,” IEEE Photo. Technol. Lett. 15(6), 834–836 (2003).
[CrossRef]

2001

2000

S. M. Nee, “Depolarization and retardation of a birefringent slab,” J. Opt. Soc. Am. A 17(11), 2067–2073 (2000).
[CrossRef] [PubMed]

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000).
[CrossRef]

M. Kompan, J. Salonen, and I. Shabanov, “Anomalous birefringence of light in free-standing samples of porous silicon,” J. Exp. Theor. Phys. 90(2), 324–329 (2000).
[CrossRef]

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38(1–3), 1–126 (2000).
[CrossRef]

1997

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. A. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

1992

R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71(8), R1– R22 (1992).
[CrossRef]

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

1965

H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31(3), 401–406 (1965).
[CrossRef]

Aitchison, J. S.

Assefa, S.

Baets, R.

T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photon. J. 1(3), 197–204 (2009).
[CrossRef]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

Bartolozzi, I.

Bienstman, P.

T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photon. J. 1(3), 197–204 (2009).
[CrossRef]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

Bisi, O.

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38(1–3), 1–126 (2000).
[CrossRef]

Björkqvist, M.

Böcking, T.

K. A. Kilian, T. Böcking, and J. J. Gooding, “The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors,” Chem. Commun. (Camb.) (6): 630–640 (2009).
[CrossRef] [PubMed]

Bonetti, G.

M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003).
[CrossRef]

Borel, P. I.

Boyd, R. W.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

Calle, A.

Christophersen, M.

V. Kochergin, M. Christophersen, and H. Föll, “Effective medium approach for calculations of optical anisotropy in porous materials,” Appl. Phys. B 79, 731–739 (2004).
[CrossRef]

Claes, T.

T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photon. J. 1(3), 197–204 (2009).
[CrossRef]

Collins, S. D.

R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71(8), R1– R22 (1992).
[CrossRef]

Dancil, K. P.

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. A. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

De Vos, K.

T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photon. J. 1(3), 197–204 (2009).
[CrossRef]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

Diener, J.

K. Nishida, M. Fujii, S. Hayashi, and J. Diener, “Temperature dependence of optical anisotropy of birefringent porous silicon,” Appl. Phys. Lett. 96(24), 243102 (2010).
[CrossRef]

N. Künzner, J. Diener, E. Gross, D. Kovalev, V. Y. Timoshenko, and M. Fujii, “Form birefringence of anisotropically nanostructured silicon,” Phys. Rev. B 71(19), 195304 (2005).
[CrossRef]

V. Y. Timoshenko, L. A. Osminkina, A. I. Efimova, L. A. Golovan, P. K. Kashkarov, D. Kovalev, N. Künzner, E. Gross, J. Diener, and F. Koch, “Anisotropy of optical absorption in birefringent porous silicon,” Phys. Rev. B 67(11), 113405 (2003).
[CrossRef]

E. Gross, D. Kovalev, N. Künzner, V. Y. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
[CrossRef]

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Y. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefringence in anisotropically nanostructured silicon,” Opt. Lett. 26(16), 1265–1267 (2001).
[CrossRef] [PubMed]

Dominguez, C.

Dronov, R.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

Efimova, A. I.

V. Y. Timoshenko, L. A. Osminkina, A. I. Efimova, L. A. Golovan, P. K. Kashkarov, D. Kovalev, N. Künzner, E. Gross, J. Diener, and F. Koch, “Anisotropy of optical absorption in birefringent porous silicon,” Phys. Rev. B 67(11), 113405 (2003).
[CrossRef]

Fainman, Y.

B-H. O, R. Liu, Y. Y. Li, M. Sailor, and Y. Fainman, “Vapor sensor realized in an ultracompact polarization interferometer built of a freestanding porous-silicon form birefringent film,” IEEE Photo. Technol. Lett. 15(6), 834–836 (2003).
[CrossRef]

Föll, H.

V. Kochergin, M. Christophersen, and H. Föll, “Effective medium approach for calculations of optical anisotropy in porous materials,” Appl. Phys. B 79, 731–739 (2004).
[CrossRef]

Frandsen, L. H.

Fujii, M.

K. Nishida, M. Fujii, S. Hayashi, and J. Diener, “Temperature dependence of optical anisotropy of birefringent porous silicon,” Appl. Phys. Lett. 96(24), 243102 (2010).
[CrossRef]

N. Künzner, J. Diener, E. Gross, D. Kovalev, V. Y. Timoshenko, and M. Fujii, “Form birefringence of anisotropically nanostructured silicon,” Phys. Rev. B 71(19), 195304 (2005).
[CrossRef]

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Y. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefringence in anisotropically nanostructured silicon,” Opt. Lett. 26(16), 1265–1267 (2001).
[CrossRef] [PubMed]

Fukami, K.

M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103(8), 083516 (2008).
[CrossRef]

Gaburro, Z.

M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003).
[CrossRef]

George, T. F.

A. E. Pap, K. Kordás, T. F. George, and S. Leppävuori, “Thermal Oxidation of Porous Silicon: Study on Reaction Kinetics,” J. Phys. Chem. B 108(34), 12744–12747 (2004).
[CrossRef]

Ghadiri, M. R. A.

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. A. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Ghulinyan, M.

M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003).
[CrossRef]

Golovan, L. A.

V. Y. Timoshenko, L. A. Osminkina, A. I. Efimova, L. A. Golovan, P. K. Kashkarov, D. Kovalev, N. Künzner, E. Gross, J. Diener, and F. Koch, “Anisotropy of optical absorption in birefringent porous silicon,” Phys. Rev. B 67(11), 113405 (2003).
[CrossRef]

Gooding, J. J.

K. A. Kilian, T. Böcking, and J. J. Gooding, “The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors,” Chem. Commun. (Camb.) (6): 630–640 (2009).
[CrossRef] [PubMed]

Gross, E.

N. Künzner, J. Diener, E. Gross, D. Kovalev, V. Y. Timoshenko, and M. Fujii, “Form birefringence of anisotropically nanostructured silicon,” Phys. Rev. B 71(19), 195304 (2005).
[CrossRef]

V. Y. Timoshenko, L. A. Osminkina, A. I. Efimova, L. A. Golovan, P. K. Kashkarov, D. Kovalev, N. Künzner, E. Gross, J. Diener, and F. Koch, “Anisotropy of optical absorption in birefringent porous silicon,” Phys. Rev. B 67(11), 113405 (2003).
[CrossRef]

E. Gross, D. Kovalev, N. Künzner, V. Y. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
[CrossRef]

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Y. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefringence in anisotropically nanostructured silicon,” Opt. Lett. 26(16), 1265–1267 (2001).
[CrossRef] [PubMed]

Hayashi, S.

K. Nishida, M. Fujii, S. Hayashi, and J. Diener, “Temperature dependence of optical anisotropy of birefringent porous silicon,” Appl. Phys. Lett. 96(24), 243102 (2010).
[CrossRef]

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Hodges, A.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

Jalkanen, T.

Jane, A.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

Jun, K. H.

Kabashin, A. V.

Kang, C.

Kashkarov, P. K.

V. Y. Timoshenko, L. A. Osminkina, A. I. Efimova, L. A. Golovan, P. K. Kashkarov, D. Kovalev, N. Künzner, E. Gross, J. Diener, and F. Koch, “Anisotropy of optical absorption in birefringent porous silicon,” Phys. Rev. B 67(11), 113405 (2003).
[CrossRef]

Kilian, K. A.

K. A. Kilian, T. Böcking, and J. J. Gooding, “The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors,” Chem. Commun. (Camb.) (6): 630–640 (2009).
[CrossRef] [PubMed]

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Kjems, J.

Koch, F.

V. Y. Timoshenko, L. A. Osminkina, A. I. Efimova, L. A. Golovan, P. K. Kashkarov, D. Kovalev, N. Künzner, E. Gross, J. Diener, and F. Koch, “Anisotropy of optical absorption in birefringent porous silicon,” Phys. Rev. B 67(11), 113405 (2003).
[CrossRef]

E. Gross, D. Kovalev, N. Künzner, V. Y. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
[CrossRef]

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Y. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefringence in anisotropically nanostructured silicon,” Opt. Lett. 26(16), 1265–1267 (2001).
[CrossRef] [PubMed]

Kochergin, V.

V. Kochergin, M. Christophersen, and H. Föll, “Effective medium approach for calculations of optical anisotropy in porous materials,” Appl. Phys. B 79, 731–739 (2004).
[CrossRef]

Kompan, M.

M. Kompan, J. Salonen, and I. Shabanov, “Anomalous birefringence of light in free-standing samples of porous silicon,” J. Exp. Theor. Phys. 90(2), 324–329 (2000).
[CrossRef]

Kordás, K.

A. E. Pap, K. Kordás, T. F. George, and S. Leppävuori, “Thermal Oxidation of Porous Silicon: Study on Reaction Kinetics,” J. Phys. Chem. B 108(34), 12744–12747 (2004).
[CrossRef]

Kovalev, D.

N. Künzner, J. Diener, E. Gross, D. Kovalev, V. Y. Timoshenko, and M. Fujii, “Form birefringence of anisotropically nanostructured silicon,” Phys. Rev. B 71(19), 195304 (2005).
[CrossRef]

V. Y. Timoshenko, L. A. Osminkina, A. I. Efimova, L. A. Golovan, P. K. Kashkarov, D. Kovalev, N. Künzner, E. Gross, J. Diener, and F. Koch, “Anisotropy of optical absorption in birefringent porous silicon,” Phys. Rev. B 67(11), 113405 (2003).
[CrossRef]

E. Gross, D. Kovalev, N. Künzner, V. Y. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
[CrossRef]

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Y. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefringence in anisotropically nanostructured silicon,” Opt. Lett. 26(16), 1265–1267 (2001).
[CrossRef] [PubMed]

Kristensen, M.

Künzner, N.

N. Künzner, J. Diener, E. Gross, D. Kovalev, V. Y. Timoshenko, and M. Fujii, “Form birefringence of anisotropically nanostructured silicon,” Phys. Rev. B 71(19), 195304 (2005).
[CrossRef]

V. Y. Timoshenko, L. A. Osminkina, A. I. Efimova, L. A. Golovan, P. K. Kashkarov, D. Kovalev, N. Künzner, E. Gross, J. Diener, and F. Koch, “Anisotropy of optical absorption in birefringent porous silicon,” Phys. Rev. B 67(11), 113405 (2003).
[CrossRef]

E. Gross, D. Kovalev, N. Künzner, V. Y. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
[CrossRef]

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Y. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefringence in anisotropically nanostructured silicon,” Opt. Lett. 26(16), 1265–1267 (2001).
[CrossRef] [PubMed]

Lechuga, L.

Lehto, V. P.

Leppävuori, S.

A. E. Pap, K. Kordás, T. F. George, and S. Leppävuori, “Thermal Oxidation of Porous Silicon: Study on Reaction Kinetics,” J. Phys. Chem. B 108(34), 12744–12747 (2004).
[CrossRef]

Li, Y. Y.

B-H. O, R. Liu, Y. Y. Li, M. Sailor, and Y. Fainman, “Vapor sensor realized in an ultracompact polarization interferometer built of a freestanding porous-silicon form birefringent film,” IEEE Photo. Technol. Lett. 15(6), 834–836 (2003).
[CrossRef]

Lim, K. S.

Lin, V. S.

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. A. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Liu, R.

B-H. O, R. Liu, Y. Y. Li, M. Sailor, and Y. Fainman, “Vapor sensor realized in an ultracompact polarization interferometer built of a freestanding porous-silicon form birefringent film,” IEEE Photo. Technol. Lett. 15(6), 834–836 (2003).
[CrossRef]

Llobera, A.

Looyenga, H.

H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31(3), 401–406 (1965).
[CrossRef]

Mäkilä, E.

Martínez-Duart, J. M.

Meunier, M.

Molera, J.

T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photon. J. 1(3), 197–204 (2009).
[CrossRef]

Motesharei, K.

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. A. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Mulloni, V.

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000).
[CrossRef]

Nee, S. M.

Nishida, K.

K. Nishida, M. Fujii, S. Hayashi, and J. Diener, “Temperature dependence of optical anisotropy of birefringent porous silicon,” Appl. Phys. Lett. 96(24), 243102 (2010).
[CrossRef]

O, B-H.

B-H. O, R. Liu, Y. Y. Li, M. Sailor, and Y. Fainman, “Vapor sensor realized in an ultracompact polarization interferometer built of a freestanding porous-silicon form birefringent film,” IEEE Photo. Technol. Lett. 15(6), 834–836 (2003).
[CrossRef]

Ogata, Y. H.

M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103(8), 083516 (2008).
[CrossRef]

Osminkina, L. A.

V. Y. Timoshenko, L. A. Osminkina, A. I. Efimova, L. A. Golovan, P. K. Kashkarov, D. Kovalev, N. Künzner, E. Gross, J. Diener, and F. Koch, “Anisotropy of optical absorption in birefringent porous silicon,” Phys. Rev. B 67(11), 113405 (2003).
[CrossRef]

Ossicini, S.

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38(1–3), 1–126 (2000).
[CrossRef]

Oton, C. J.

M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003).
[CrossRef]

Pap, A. E.

A. E. Pap, K. Kordás, T. F. George, and S. Leppävuori, “Thermal Oxidation of Porous Silicon: Study on Reaction Kinetics,” J. Phys. Chem. B 108(34), 12744–12747 (2004).
[CrossRef]

Patskovsky, S.

Pavesi, L.

M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003).
[CrossRef]

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38(1–3), 1–126 (2000).
[CrossRef]

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000).
[CrossRef]

Phare, C. T.

Polisski, G.

Prasad, P. N.

Prieto, F.

Ruda, H. E.

Sailor, M.

B-H. O, R. Liu, Y. Y. Li, M. Sailor, and Y. Fainman, “Vapor sensor realized in an ultracompact polarization interferometer built of a freestanding porous-silicon form birefringent film,” IEEE Photo. Technol. Lett. 15(6), 834–836 (2003).
[CrossRef]

Sailor, M. J.

M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103(8), 083516 (2008).
[CrossRef]

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. A. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Sakka, T.

M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103(8), 083516 (2008).
[CrossRef]

Salem, M. S.

M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103(8), 083516 (2008).
[CrossRef]

Salonen, J.

Schacht, E.

T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photon. J. 1(3), 197–204 (2009).
[CrossRef]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

Shabanov, I.

M. Kompan, J. Salonen, and I. Shabanov, “Anomalous birefringence of light in free-standing samples of porous silicon,” J. Exp. Theor. Phys. 90(2), 324–329 (2000).
[CrossRef]

Sipe, J. E.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

Skivesen, N.

Smith, R. L.

R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71(8), R1– R22 (1992).
[CrossRef]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Têtu, A.

Timoshenko, V. Y.

N. Künzner, J. Diener, E. Gross, D. Kovalev, V. Y. Timoshenko, and M. Fujii, “Form birefringence of anisotropically nanostructured silicon,” Phys. Rev. B 71(19), 195304 (2005).
[CrossRef]

V. Y. Timoshenko, L. A. Osminkina, A. I. Efimova, L. A. Golovan, P. K. Kashkarov, D. Kovalev, N. Künzner, E. Gross, J. Diener, and F. Koch, “Anisotropy of optical absorption in birefringent porous silicon,” Phys. Rev. B 67(11), 113405 (2003).
[CrossRef]

E. Gross, D. Kovalev, N. Künzner, V. Y. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
[CrossRef]

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Y. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefringence in anisotropically nanostructured silicon,” Opt. Lett. 26(16), 1265–1267 (2001).
[CrossRef] [PubMed]

Torres-Costa, V.

Vlasov, Y. A.

Voelcker, N. H.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

Wei, X.

Weiss, S. M.

Wosinski, L.

Xu, M. Y.

Xu, T.

Zhu, N.

Appl. Opt.

Appl. Phys. B

V. Kochergin, M. Christophersen, and H. Föll, “Effective medium approach for calculations of optical anisotropy in porous materials,” Appl. Phys. B 79, 731–739 (2004).
[CrossRef]

Appl. Phys. Lett.

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000).
[CrossRef]

K. Nishida, M. Fujii, S. Hayashi, and J. Diener, “Temperature dependence of optical anisotropy of birefringent porous silicon,” Appl. Phys. Lett. 96(24), 243102 (2010).
[CrossRef]

Biosens. Bioelectron.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Chem. Commun. (Camb.)

K. A. Kilian, T. Böcking, and J. J. Gooding, “The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors,” Chem. Commun. (Camb.) (6): 630–640 (2009).
[CrossRef] [PubMed]

IEEE Photo. Technol. Lett.

B-H. O, R. Liu, Y. Y. Li, M. Sailor, and Y. Fainman, “Vapor sensor realized in an ultracompact polarization interferometer built of a freestanding porous-silicon form birefringent film,” IEEE Photo. Technol. Lett. 15(6), 834–836 (2003).
[CrossRef]

IEEE Photon. J.

T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photon. J. 1(3), 197–204 (2009).
[CrossRef]

J. Appl. Phys.

M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103(8), 083516 (2008).
[CrossRef]

E. Gross, D. Kovalev, N. Künzner, V. Y. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001).
[CrossRef]

R. L. Smith and S. D. Collins, “Porous silicon formation mechanisms,” J. Appl. Phys. 71(8), R1– R22 (1992).
[CrossRef]

M. Ghulinyan, C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, “Free-standing porous silicon single and multiple optical cavities,” J. Appl. Phys. 93(12), 9724–9729 (2003).
[CrossRef]

J. Exp. Theor. Phys.

M. Kompan, J. Salonen, and I. Shabanov, “Anomalous birefringence of light in free-standing samples of porous silicon,” J. Exp. Theor. Phys. 90(2), 324–329 (2000).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

J. Phys. Chem. B

A. E. Pap, K. Kordás, T. F. George, and S. Leppävuori, “Thermal Oxidation of Porous Silicon: Study on Reaction Kinetics,” J. Phys. Chem. B 108(34), 12744–12747 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

Phys. Rev. B

N. Künzner, J. Diener, E. Gross, D. Kovalev, V. Y. Timoshenko, and M. Fujii, “Form birefringence of anisotropically nanostructured silicon,” Phys. Rev. B 71(19), 195304 (2005).
[CrossRef]

V. Y. Timoshenko, L. A. Osminkina, A. I. Efimova, L. A. Golovan, P. K. Kashkarov, D. Kovalev, N. Künzner, E. Gross, J. Diener, and F. Koch, “Anisotropy of optical absorption in birefringent porous silicon,” Phys. Rev. B 67(11), 113405 (2003).
[CrossRef]

Physica

H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica 31(3), 401–406 (1965).
[CrossRef]

Science

V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. A. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278(5339), 840–843 (1997).
[CrossRef] [PubMed]

Surf. Sci. Rep.

O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38(1–3), 1–126 (2000).
[CrossRef]

Trends Biotechnol.

A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009).
[CrossRef] [PubMed]

Other

T. C. Choy, “Effective Medium Theory, Principles and Applications,” Oxford University Press, (1999).

I. Suárez, V. Chirvony, D. Hill, and J. Martínez-Pastor, “Simulation of surface-modified porous silicon photonic crystals for biosensing applications,” Phot. Nano. Fund. Appl., doi:10.1016, (2011)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Scheme of an anisotropic PSi layer produced from a (110) surface oriented Si wafer.

Fig. 2
Fig. 2

(a) Birefringence computed using the Bruggeman model for a binary PSi layer (silicon and pores filled with air) as a function of wavelength and porosity. (b) Birefringence change due to presence of different substances inside the pores (ethanol and isopropanol) as a function of wavelength and porosity.

Fig. 3
Fig. 3

(a) Pore cross-section scheme. The surface oxidation of the pores walls leads to a volume expansion (dashed line). (b) Birefringence variation as a function of the PSi layer porosity for several silicon dioxide volume fractions.

Fig. 4
Fig. 4

Surface SEM images of two fabricated and optically characterized samples: (a) PSi sample with pore size in the order of a 10 nm, (b) PSi sample with pores size in the order of 50 nm.

Fig. 5
Fig. 5

Scheme of the setup used for the optical characterization of the PSi membranes.

Fig. 6
Fig. 6

(a) Transmission spectra for empty pores (red line), pores completely filled with isopropanol (green line) and ethanol (blue line). Dashed lines represent the corresponding theoretical curves. (b) Birefringence data obtained from the measured spectra (dots) and simulated curves using the Bruggeman model (dashed lines) for air (red), isopropanol (green) and ethanol (blue).

Fig. 7
Fig. 7

Birefringence measured immediately after samples fabrication (green dots) and one hundred fifteen days later (blue dots) for a PSi sample without thermal treatment (a) and for a sample oxidized at 200° during 12 hours (b).

Fig. 8
Fig. 8

(a) Measured (green line) and fitted transmittance spectra (dotted blue line) for a PSi sample with thickness of 30 μm (a) and a PSi sample with thickness of 64 μm (b).

Fig. 9
Fig. 9

(a) Birefringence probability density functions in account for the three main factors that produces the depolarization for a 30 μm thick sample (a) and a 64 μm thick sample (b).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

L [1 1 ¯ 0] = 1 1 ξ 2 ( 1ξ arcsin( 1 ξ 2 ) 1 ξ 2 )
L [001] = 1 L [1 1 ¯ 0] 2
i f i n i 2 (λ) n [001],[110] 2 n [001],[110] 2 + L [001],[110] ( n i 2 (λ) n [001],[110] 2 ) =0
f Si = f S i 0 f Si O 2 /2.27
f Pores = f Pore s 0 1.27/2.27· f Si O 2
Δϕ( λ )= 2π λ dΔn( λ )
T || ( λ  )= cos 2 ( Δϕ( λ )/2 )
T ( λ )= sin 2 ( Δϕ( λ )/2 )
Δ ϕ s ( λ )= 2π λ+Λ (d+Γ)Δn( λ+Λ )+Ψ
T || ( λ  )= lim N ( 1 N 1 N cos 2 ( Δ ϕ s ( λ )/2 ) )
T ( λ )= lim N ( 1 N 1 N sin 2 ( Δ ϕ s ( λ )/2 ) )

Metrics